市販マグネシウム合金板の冷間プレス成形法の開発

豊橋技術科学大学 機械工学系 教授 森謙一郎 (平成 20 年度重点研究開発助成 AF-2008002)

キーワード:市販マグネシウム合金板,冷間プレス成形,2段加工

1. 緒 言

マグネシウム合金は大きな比強度を有し,携帯電話, パソコン,カメラ,自動車などに広く応用されつつある. マグネシウム合金部品は主にダイカスト,チクソモール ディングで成形されているが,生産性向上,薄肉化,高 強度化などの観点から板材プレス成形の適用が望まれて いる¹⁾.マグネシウム合金板材の供給体制も整備されつ つあり,プレス成形の環境が整ってきている²⁾.

マグネシウム合金では、常温においてすべり系が少な いため延性は低く、曲げのような変形が小さい加工では 冷間成形が行われているが、深絞り、張出しのような変 形が大きな加工は困難とされている.マグネシウム合金 では、パソコン、カメラなどの筐体としての用途が多い ため、深絞り加工の適用が望まれる.マグネシウム合金 は 200~300°C 程度に加熱すると成形性が大きく向上す るため、深絞り加工は一般に温間で行われている^{3~7)}. 温間深絞り加工は成形限界を大幅に向上させるが、加熱 装置を金型に組み込むために成形装置が複雑になる.

市販マグネシウム合金板では、冷間深絞り加工の限界 絞り比は 1.3~1.5 程度と低いことが報告されている⁸⁾. 筆者ら⁹⁾は市販マグネシウム合金板に高温焼なましを行 うことによって、冷間深絞り加工が可能であることを示 した.しかしながら、小さな肩半径のパンチで冷間深絞 り加工を行うと、変形が集中して破断を生じるため、小 さな角半径を有する容器を成形することは難しい.マグ ネシウム合金は電子・電気機器のケースとして用途が多 いため、角筒容器の成形が望まれるが、小さな角半径の 角筒容器を冷間深絞り加工することは困難である.

本研究では、小さな角半径を有するマグネシウム合金 容器の冷間2段プレス成形法を開発した.この方法では、 1段目に大きな肩半径のパンチで深絞り加工を行い、成 形された容器の側壁を押すことによって角半径を小さく する.2段プレス成形によって円筒および角筒容器を成 形した.

マグネシウム合金容器の冷間2段プレス成形 法

2・1 焼なまし条件

板厚0.5mmの市販AZ31マグネシウム合金板(大阪富士 工業㈱製)を実験材料として用いた. AZ31 はアルミニウ ムを約3%, 亜鉛を約1%含んでおり, 延性, 加工性に優 れており, マグネシウム合金板材としては最も一般的に 製造されている. 市販マグネシウム合金板は圧延による 強加工を受けて延性が低いため, 焼なまし処理によって 成形性を向上させた.焼なまし処理は大気雰囲気で行い, マグネシウム板が酸化されて延性が低下するのを防止す るため,マグネシウム板を鋼板ではさんでアルミホイル を巻いて密閉した. 温度は 350°C~550°C であり,保持時 間は 1h である.

焼なましされた板材の引張試験における全伸び,最小 断面積の減少率である絞りと焼なまし温度の関係を Fig. 1 に示す.焼なましを行うことにより全伸びおよび絞り は向上しているが,焼なまし温度による影響は少ない.

AZ31 マグネシウム合金板における結晶粒径および硬 さと焼なまし温度の関係を Fig. 2 に示す.焼なまし温度 の増加とともに硬さは少し減少しており,結晶粒径は大

Fig. 2 Variations in grain diameter and hardness with annealing temperature for AZ31 magnesium alloy sheet

きく増加している.焼なましを行っていない板材では強加工を受けており,結晶粒は非常にばらついており,粒 径を求めるのは困難であった.

限界絞り比と焼なまし温度の関係を Fig. 3 に示す. 2mm のパンチ肩半径の結果を示しているが,比較のため 500°C, 5mm の結果も示した.焼なましを行わないものは, 絞り比 1.32 においても割れが発生したが,焼なましを行 うことによって限界絞り比は向上した.焼なまし温度と ともに限界絞り比は増加し,500°C で最大値を示してお り,500°C を越えると表面の酸化が著しくなった.以下 の実験では,500°C の高温焼なましされた板材を用いた.

Fig. 3 Relationship between limiting drawing ratio and annealing temperature

2·2 2段成形法

Fig.4に示すようにパンチ肩半径が1mmのように小さ な底角半径を持つ容器を成形するのは容易ではない.小 さな肩半径のパンチを用いると,変形が容器の底角部に 集中して破断を生じる.

Fig. 4 Fracture in drawn cup with punch having corner radius of 1mm

小さな角半径を有するマグネシウム合金容器を成形 するために, Fig. 5 に示すような 2 段プレス成形法を開 発した.1 段目において, 5mm の大きな肩半径のパンチ を用いて深絞り加工を行って容器を得る.肩半径が大き いため,変形が集中しなく,絞ることができる.次に 2 段目において,成形された容器をコンテナ内に入れ,ス プリングを付けた内側パンチによって容器底部を拘束し た状態で,段付き外側パンチで容器側壁上端部を押下げ ることによって底角半径を小さくする.2 段目では圧縮 応力下で成形を行うことによって,割れの発生を抑制す る.

円筒容器の冷間2段プレス成形 3・1 冷間2段成形結果

市販有限要素法ソフト ABAQUS を使用して 2 段プレ ス成形をシミュレーションし, 2 段目成形の変形形状の 計算結果を Fig. 6 に示す.ここで, s は 2 段目における 外側パンチのストロークである.ストローク s が増加す るとともに側壁部が押し込まれて底角半径が減少してお り, s=2.6mm において容器の底角半径が大幅に小さくな っている.

Fig. 6 Deforming shape of cup in 2nd stage calculated from finite element simulation

側壁高さおよび底角半径と2段目ストロークの関係を Fig.7に示す.2段目ストロークともに,側壁は圧縮され て底角半径は減少しているが, *s*=2.8mmでは圧縮が過度 になって底角部に割れが発生している.

Fig. 7 Variations in side height and corner radius with stroke in 2nd stage

s=2.6mm における成形実験から得られた 1,2 段後の容 器断面を Fig. 8 に示す. 底角半径は1段目成形後に 5.0mm あったが、2 段目では s=2.6mm において 1.1mm にまで 減少している.

(a) 1st stage

Fig. 8 Cross-sections of cup obtained from experiment for s=2.6mm

s=2.6mm における成形実験から得られた 1,2 段目の容 器の板厚ひずみおよび硬さ分布を Fig.9 に示す. ここで, 横軸は容器中央からの距離であり、2 段目底角部を破線 で示し、右端は側壁上端になる.2 段目成形前後で板厚 ひずみおよび硬さ分布はあまり変化していなく,2段目 では底角半径を小さくするために、容器側壁が押されて 底角部だけが変形している.

Fig. 9 Distributions of thickness strain and hardness of cup obtained from experiment for s=2.6mm

3・2 しごき加工の適用

外側パンチで容器側壁上端部を押下げるために、容器 高さは小さくなる. 容器高さを増加するために、1 段目 においてしごき加工を加えた. しごき率を変化させて成 形された円筒容器を Fig. 10 に示す. しごき率は1段目の

(a) *r*=20% (b) *r*=25% Fig. 10 Ironed cups in 1st stage

深絞り加工で最大になる側壁上端の板厚を基準にしてい る. しごき率 r=20%では加工が行えているが, r=25%で は側壁端部に割れが生じており、限界しごき率は20%に なった.

2 段成形された円筒容器の断面を Fig. 11 に示す. r=20%のしごき加工を加えると、側壁高さが Fig. 8 に示 す 7.2mm から 8.4mm に増加できた.

r=20%における成形された円筒容器の板厚ひずみと硬 さ分布を Fig. 12 に示す.1 段目では深絞り加工によって 角部で板厚が小さくなっているが、2 段目の圧縮加工に おいて、板厚が少し回復している. Fig. 9 に示すしごき 加工なしの結果と比較して、しごき加工を加えることに よって側壁上部の板厚増加は抑制されている.2 段目で は、底角部付近を除いて硬さはほとんど変化しない.

Fig. 12 Distributions of thickness strain and hardness of cup obtained from experiment with ironing in 1st stage

角筒容器の冷間2段プレス成形 4

4・1 角筒容器の成形

マグネシウム合金板の冷間2段角筒成形を行い、その 工具とブランクを Fig. 13 に示す. 正方形板材角部のカッ ト形状を変化させて深絞り加工を行い、容器高さが均一 に近いブランク形状を採用した.

Fig. 13 2-stages stamping of square cup having small corner radius

1 段目において絞り比を変化させて成形された角筒容器を Fig. 14 に示す. 絞り比 1.44 では加工が行えているが, 1.49 では側壁端部に割れが生じており, 限界絞り比は 1.44 になり,絞り比 1.44 に対して 2 段成形を行った.

(a) Drawing ratio 1.44(b) Drawing ratio 1.49Fig. 14 Drawn square cups in 1st stage for different drawing ratios

2段成形された角筒容器を Fig. 15 に示す.2 段目にお いて圧縮加工を行うことによって角半径を小さくするだ けでなく、1 段目で不均一であった側壁高さは2 段目で 圧縮されて均一になっている.ノートパソコン,携帯電 話の筐体は比較的浅いため,成形された角筒容器はこの ような筐体に十分適用できる.

Fig. 15 Formed square cup with small corner radius by 2-stages stamping

2段成形された角筒容器の対辺方向断面を Fig. 16 に示 す. 底角半径の小さな角筒容器が成形されている.

Fig. 16 Opposite side cross-sections of formed square cup by 2-stages stamping

4・2 ゴムパンチの適用

底角半径および側壁角半径をさらに減少させるため に, Fig. 17 に示すように 2 段目においてスチールパンチ の下部にウレタンゴムパンチを挿入して成形を行った. スチールパンチによる 2 段目成形では,容器角部に圧力 が作用しないため,変形するゴムパンチを用いて角部に も圧力を作用させた.

Fig. 17 Use of rubber punch in 2nd stage of 2-stages stamping of square cup

ゴムパンチによって2段成形された角筒容器の対辺方 向断面と上面を Fig. 18 に示す.スチールパンチの結果と 比較して,底角半径は Fig. 16 (b)の R0.6 から R0.3 に,側 壁角半径は Fig. 15 の右図の R1.7 から R0.3 にそれぞれ減 少させることができた.

(a) Opposite side cross-section

(b) Top section

Fig. 18 Opposite side cross-section and top section of formed square cup with rubber punch

スチールパンチとゴムパンチによって2段成形された 角筒容器の対辺方向断面の板厚ひずみと硬さ分布を Fig. 19に示す.スチールパンチの板厚は底角部で大きくなっ ているが,ゴムパンチでは底角部の急激な板厚増加は抑 制されている.ゴムパンチとスチールパンチの硬さは同 様な分布を示している.

スチールパンチとゴムパンチによって2段成形された 角筒容器の対角方向断面を Fig. 20 に示す.対角方向底角 部では,材料が十分に張出されていない.今回の実験で は直方体のゴムパンチを使用したが,ゴムパンチは変形 するため形状を最適化することによって対角方向底角部 に高い圧力を作用させてこの部分を張出させることがで きると思われる.

Fig. 20 Opposite angle cross-sections of formed square cups with steel and rubber punches

5. 底部ビードを有する角筒容器の冷間成形

5・1 ゴム圧による冷間底部ビード成形方法

容器の剛性を向上させるために,角筒容器の底部に凸 形状のビードを成形した.まず,割れを防止するために 角部半径の大きなパンチで割れ発生を防止して角筒容器 を成形する.つぎに,Fig.21に示すようなゴムパンチと 溝付きダイスを用いて,角筒容器の底部ビードを成形す るとともに底角部の半径を小さくする.コンテナに入れ られた容器の端部が鋼パンチによって圧縮されるととも

Fig. 21 Forming of square cup having bottom bead using rubber punch

に、容器底部がゴムパンチの突起によってダイスの溝部 に張出されて凸型ビードが形成される.ゴムパンチの張 出しと鋼パンチの容器端部の圧縮によって容器の変形の 集中を緩和して割れを防止する.

角筒容器の冷間底部ビード成形条件を Fig. 22 に示す. コンテナ底部の凹形状の幅は 5mm であり,空隙への充 満率を向上させるためにゴムパンチの凸部の幅wと高さ hを変化させた.ゴムパンチはシェア硬さ A90 のウレタ ン製,潤滑剤は二硫化モリブデン,パンチ速度は 10mm/min である.比較のために,ゴムパンチの代わり に凸型鋼パンチによってもビードを成形した.

5・2 冷間底部ビードの成形結果

w=5mm, *h*=1.5mm における冷間ビード成形された容器 を Fig. 23 に示す. ストローク *s* の増加とともに底部のビ ードが高くなっている. *s*=2.5mm に達すると容器内側の ビード端部でクラックが生じている.

Fig. 23 Square cups after beading for w=5mm and h=1.5mm

h=1.5mmにおける限界充満率とゴム凸部の幅の関係を Fig. 24 に示す.限界充満率は、クラックの生じない最大 ストロークにおいて得られた容器凸部体積に対するコン テナ凹部容積の比である.凸部の幅 w=5mm では小さい が 6mm と 7mm ではほぼ同じである.

Fig. 24 Relationship between filling volume ratio and convex width of rubber for h=1.5mm

w=6mm, 限界ストロークにおける容器中央部の角部半 径 *r_c*におよぼすゴムパンチの凸部高さ*h*の影響を Fig. 25 に示す. 角部半径は *h*=2.0mm 以上では一定となっている ために *h*=2.0mm を採用した.

Fig. 25 Effect of convex height of rubber on corner radius for *w*=6mm and stroke limit

最適なゴム凸部の幅と高さを用いた底部ビード成形 と鋼製のパンチにより成形された容器を Fig. 26 に示す. 鋼パンチでは容器凸部にクラックが発生しているが,最 適なゴムパンチによるビード成形では欠陥なく成形され ている.また,角部半径 r_cは,4.5mmから1.37mmに減 少することができ,角部の半径を小さくできて底部に凸 形ビードを有する AZ31 角筒容器が成形できた.容器に 耳がわずかに発生しているが,ブランク形状を修正する ことによって防止できると考えられる.

(a) Rubber punch, *s*=3mm (b) Steel convex punch, *s*=0.9mm

Fig. 26 Square cups after beading by optimum rubber and steel punches for w=6mm and h=2.0mm

6. 結 言

小さな角半径を有するマグネシウム合金容器の冷間 2 段プレス成形法を開発し,以下の知見を得た.

- 1)1段目に大きな肩半径のパンチで深絞り加工を行い, 成形された容器側壁を押すことによって角半径が小 さい容器を成形できた.
- 円筒容器において、1段目にしごき加工を加えること によって、容器高さを増加させた.
- 3) 角筒容器において、2段目成形においてゴムパンチを 用いることによって、底角半径および側壁角半径を減 少させた.
- 4) 成形された角筒容器はノートパソコン,携帯電話の筐 体のような比較的浅い容器に十分適用できる.
- 5) ゴムパンチと溝付きダイスによって,角筒容器の底部 にビードを成形することができた.

謝 辞

本研究は,天田金属加工機械技術振興財団による平成 20年度研究助成金(AF-2008002)によるものであり,財団 に感謝いたします.

参考文献

- 1) 林央: プレス技術, 43-7 (2005), 18-26.
- 2) 小原久:同上, 45-10 (2007), 23-27.
- 相田収平・田辺寛・須貝裕之・高野格・大貫秀樹・ 小林勝:軽金属, 50-9 (2000), 456-461.
- 4) 戸澤康壽:同上,51-10 (2001), 492-497.
- 5) 佐藤雅彦: 塑性と加工, 48-556 (2007), 373-378.
- 6) 岩崎源・坂部裕司:同上, 48-556 (2007), 384-389.
- 7) 久野拓律: プレス技術, 45-10 (2007), 40-45.
- 8) 日本塑性加工学会編:マグネシウム加工技術,(2004), 109-119, コロナ社.
- 9) 森謙一郎・辻浩和: 塑性と加工, 48-552 (2007), 41-45