異方性金属板材の冷間・温間における大ひずみ塑性構成モデルと その成形シミュレーションへの応用

広島大学大学院工学研究科 機械システム工学専攻 教授 吉田 総仁 (平成14年度研究開発助成 AF-2002015)

キーワード:異方性板材,塑性構成モデル,成形シミュレーション

1. 研究の目的と背景

最近では自動車産業を中心として極めて強度の高い高 張力鋼板 (ハイテン材) が使われてきており、こうした板 材についての破断、スプリングバックの予測は重要な課題 となってきている.板材成形における破断・しわの発生に はr値で代表される異方性が、スプリングバックには繰返 し加工硬化特性とバウシンガー効果が強く影響する.した がって、板材成形の数値シミュレーションではこれらの材 料挙動を正確に表す塑性構成モデルが必要になる.こうし た目的のために、板材の降伏曲面にたいする実験としては 白鳥・池上¹⁾,白井・戸澤²⁾の先駆的な研究があり,最近 では桑原ら3)の二軸引張り実験がある.異方性降伏関数に ついては, Hill^{4), 5)}, Logan-Hosford⁶⁾, Gotoh⁷⁾, Barlat⁷⁾などの 多くのの提案があるが,これらはバウシンガー効果や繰返 し硬化のモデル化は行っていない. 著者らは, 板材成形と りわけスプリングバックの解析にはバウシンガー効果や 繰返し硬化のモデル化が重要であることを早くから主張 し 9.11),新しい大ひずみ弾塑性構成モデル (Yoshida-Uemori model¹²⁾)を提案したが、集合組織によ る初期異方性については考えていなかった.

一方, アルミニウム合金やマグネシウム合金板の成形を 考えると, これらは室温では延性に乏しい, ストレッチャ ーストレインが発生するなどの問題があり, 温間成形が行 われることが多い. こうした材料の温間成形シミュレーシ ョンには, 変形抵抗の温度・速度依存性を的確に表現する 粘塑性モデルが必要となる. 室温においては, アルミニウ ム合金の降伏関数についての Barlat らの一連研究がある が, 温間成形シミュレーションに用いることができる温 度・速度依存の粘塑性構成モデルの研究はほとんどみられ ない. とりわけ板材の多軸温間実験は皆無といってよい.

本研究の目的は次のとおりである.第一に,冷延鋼板 (SPCC)および高張力鋼板,アルミニウム合金(A5083) やマグネシウム合金板(AZ31)について,二軸引張り実 験および繰返し塑性実験を行い,これらの異方性,バウシ ンガー効果や繰返し硬化挙動を実験的に明らかにする.と りわけアルミニウム合金およびマグネシウム合金板につ いては材料挙動の温度・速度依存性について調査する.第 二に,これらの材料挙動を適切に記述できる塑性(あるい は粘塑性)構成モデルを提案する.第三に,このモデルを 成形シミュレーションに応用することでモデルの有効性 を明らかにする.

2. 塑性および粘塑性構成モデルの枠組み

2. 1 異方性塑性構成モデル¹³⁾

図1に模式的に示すように、降伏曲面は塑性変形に伴って拡大および移動する限界曲面 (bounding surface) の中を移動するものとする. 初期降伏条件が $f = \phi(\sigma) - Y = 0$ で与えられるとき、

降伏曲面:
$$f = \phi(\boldsymbol{\sigma} - \boldsymbol{\alpha}) - Y = 0$$
 (1)

限界曲面:
$$F = \phi(\boldsymbol{\sigma} - \boldsymbol{\beta}) - (B + R) = 0$$
 (2)

ここで, Y:降伏曲面の大きさ(初期降伏強さ), α: 降伏曲面の中心(背応力), B:限界曲面の初期の大きさ, R:限界曲面の等方硬化, β:限界曲面の中心である. 塑性ひずみ速度 D^p は次式で示す降伏曲面への垂直則よ り決定できる.

$$\boldsymbol{D}^{p} = \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{\sigma}} \dot{\boldsymbol{\lambda}} \tag{3}$$

図1 降伏曲面と限界曲面

二軸引張り試験片 (mm) 図2

このモデルにおいて, 異方性は降伏関数 $\phi(\sigma)$ により表現 され、バウシンガー効果や繰返し塑性硬化は背応力 αの 発展式, さらにそれに関連する限界曲面の移動と大きさを 表す内部状態変数 β, R の発展式により表されることに なる.

2. 2 粘塑性構成モデル

降伏関数が式(1)で与えられるとき、速度依存型の粘塑 性構成モデルの一般形を次式のように仮定する.

$$\dot{\overline{\varepsilon}} = F\left(\left\langle \phi(\boldsymbol{\sigma} - \boldsymbol{\alpha}) - Y \right\rangle\right) \tag{4a}$$

$$\boldsymbol{D}^{p} = \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{\sigma}} \dot{\boldsymbol{\lambda}}$$
(5b)

ここで、 $\frac{\dot{\epsilon}}{\epsilon}$ は相当塑性ひずみ速度であり、これが超過応 力(overstress) $\langle \phi(\sigma - \alpha) - Y \rangle$ の関数として与えられる. 温度の影響は降伏応力 Y および背応力 Q を温度 T の関数 として表現される.本研究では高温において降伏関数 $\phi(\sigma)$ がどのような形になるかについて主に検討する.

3. 実験方法

1

3.1 鋼板の室温における塑性変形特性¹³⁾

冷延鋼板 (SPCC) および 440, 590, 780, 980MPa 級の 高張力鋼板を用いて,単軸引張り,面内繰返し引張り圧縮 (接着積層試験片を用いる),二軸引張り試験(図2に示 す十字型試験片を用いる)を行った. 二軸引張り試験にお いては比例負荷試験とともに、図3に示すように、

 (σ_r, σ_v) =(1:1)の等二軸引張り予負荷を加えた後,一度

応力反転における応力-ひずみ応答(SPCCの実験結果)¹³⁾ 図4

図5 繰返し応力反転における応力--ひずみ応答(SPCCの実験結果とYoshida-Uemori modelによる計算結果¹²)

除荷し(実線 O→A→O),種々の方向の二軸引張り応力を 再度加える(破線 O→B~D)非比例負荷実験も行った.

3.2 アルミニウムおよびマグネシウム合金の高温粘塑 性変形特性

アルミニウム合金(A5083)およびマグネシウム合金板 (AZ31)を用いて,種々の温度(室温~350℃)とひずみ 速度(10⁴~10⁻²s⁻¹)における単軸引張りおよび二軸引張り 試験を行った.

4. 材料挙動およびモデル化に関する結果と考察

4. 1 鋼板の室温における塑性変形

大ひずみにおける応力反転時の塑性挙動の一例として, 冷延鋼板(SPCC)の実験結果を図4に示す.また,図5 には繰返し応力-ひずみ応答の実験結果(あわせて後述す るモデルによるシミュレーション結果)を示す.これらに みられる塑性変形挙動の特徴を整理すると以下のとおり である.

- 応力反転後の再降伏は極めて早期に起こり、その後、加工硬化係数が塑性ひずみの親展とともに急激に減少する遷移的バウシンガー効果が見られる.なお、応力反転時に一見線形弾性挙動のようにみえる応カーひずみ応答も詳細に見ると非線形応答をしており、この部分の平均的応力・ひずみ勾配から求めたヤング率は処女材のそれよりも小さくなっている(いわゆるヤング率の塑性ひずみ依存性).
- 大きな塑性予ひずみ後の応力反転では, 遷移的バウシ ンガー効果の後に加工硬化が休止したような領域が見 られ(硬化休止現象[workhardening stagnation]), その後 加工硬化が再開する.反転後の塑性変形が大きくなって も流動応力レベルは同一のひずみにおける単調負荷の それよりもわずかに低くなる(永久軟化現象).
- 繰返し塑性変形において応力振幅は繰返しとともに

増大するが、それはやがて一定の値に収束する.この繰返 し応力振幅の収束値は繰返し塑性ひずみ幅が大きいほど 大きくなる(応力振幅の繰返し塑性ひずみ幅依存性).

以上の繰返し塑性挙動を記述するために,2.1節で述 べた塑性構成モデル中の内部状態変数の発展式を次のよ うに与える.

降伏曲面の限界曲面に対する相対移動:

 α_*

$$=\boldsymbol{\alpha}-\boldsymbol{\beta},\tag{6}$$

$$\overset{o}{\boldsymbol{\alpha}}_{*} = C \left[\left(\frac{a}{Y} \right) (\boldsymbol{\alpha} - \boldsymbol{\beta}) - \sqrt{\frac{a}{\overline{\alpha}_{*}} \boldsymbol{\alpha}_{*}} \right] \dot{\overline{\varepsilon}}, \qquad (7)$$

$$\overline{\alpha}_* = \phi(\boldsymbol{\alpha}_*), \quad a = B + R - Y$$

限界曲面の拡大:
$$\dot{R} = k \left(R_{sat} - R \right) \dot{\overline{\varepsilon}}$$
 (8)

限界曲面の移動:
$$\boldsymbol{\beta}' = k \left(\frac{2}{3} b \boldsymbol{D}^p - \boldsymbol{\beta}' \boldsymbol{\overline{\varepsilon}} \right)$$
 (9)

降伏曲面の移動硬化は転位の運動に対して方向性を持つ 長距離障害物(比較的大きな第2相や介在物,結晶粒界な ど)による硬化を表しており,これらの障害物により運動 を阻止された転位は反転負荷により容易に可動性を回復 する.応力反転時における早期降伏と急速な加工硬化率の 変化に特徴づけられる遷移的バウシンガー効果の機構は このように説明できる.限界曲面はランダム配置された短 距離障害物(固溶原子,微細析出物など)および転位壁や セルなどによる比較的安定な転位組織による硬化を表し ている.反転負荷における硬化休止現象は単調負荷により 形成された転位壁やセルが反転負荷によりその一部が分 解され再構築される過程であることが実験観察により明 らかにされているが,本モデルではこれを限界曲面の拡大 の一時停止,さらに非硬化領域の発展としてモデル化して

図6 繰返し応力反転における応力-ひずみ応答 (440MPa級高張力鋼板の実験結果とYoshida-Uemori modelによる計算結果)¹³⁾

いる(詳細は文献12)を参照).なお、ヤング率の塑性ひ ずみ依存性に関しては以下の式を提案している¹⁴⁾.

$$E = E_o - \left(E_o - E_a\right) \left[1 - \exp\left(-\xi\overline{\varepsilon}\right)\right]$$
(10)

ここで、 E_o は処女材のヤング率、 E_a は無限大の相当塑 性ひずみを受けた材料のヤング率、 ξ は材料定数である.

図 5,6にはそれぞれ SPCC および 440MPa 級高張力鋼 板の繰返し応カーひず応答についての本モデルによるシ ミュレーション結果と実験結果とを比較して示す.本モデ ルはバウシンガー効果,硬化休止現象,応力振幅の繰返し 塑性ひずみ幅依存性を精度良く表現できる.

図 7 比例負荷における等塑性仕事曲面 (980 MPa級高張力鋼板)¹⁵⁾

このモデルの特長のひとつは任意の異方性降伏関数を 用いることができることである.ここで,二軸引張り試験 により得られた降伏曲面の形状について検討してみる.冷 延鋼板(SPCC)の平均r値はおよそ1.6程度であったが, 高張力鋼板の平均r値は0.8~0.9程度であり比較的異方 性は弱かった.図7には,一例として980 MPa級の高張力 鋼板の比例負荷変形時における降伏曲面(0.2%耐力から算 出した等塑性仕事曲面)の実験結果とそれを数種類の降伏 関数(Hill48⁴),Gotoh⁷⁾,そしてHill90⁵⁾)を用いて計算し た結果を比較して示している.この材料は異方性が強くな い(平均r値=0.8)こともあり,どの降伏関数を用いた計 算結果も実験結果と比較的良く一致した.なお,延鋼板 (SPCC)についてはHill48降伏関数の計算結果は実験結 果との差が大きく,Gotohおよび Hill90降伏関数が比較的 良い結果を与える.

ところで、板材の降伏曲面に関する従来の研究は比例負荷におけるものがほとんどであり、非比例負荷における検討はほとんどなされていない. 図8には、 980 MPa級の高張力鋼板について、(1)初期降伏曲面、(2)比例負荷における等塑性ひずみ曲面(相当塑性ひずみ0.2%)、(3)等二軸負荷(O→A)を加えた後に一旦除荷(A→O)し、さらに種々の応力方向に負荷したときの等塑性ひずみ曲面(相当塑性ひずみ0.3%)の実験値と本モデル(Hill48 降伏関数を用いたYoshida-Uemori model)による計算結果の比較を示したものである¹⁵⁾.計算結果は実験結果とよく一致しており、本モデルの妥当性が検証できた.なお、図中には等

二軸負荷 (O→A)・除荷 (A→O) 後に (σ_x, σ_y) =(2:1)方

向(O→B)に応力を加えた際の降伏曲面の計算結果も合わせて示している.

図8 非比例負荷変形時における等塑性仕事曲面の計算 結果と実験結果の比較(980 MPa級高張力鋼板)¹⁵⁾

4.2 アルミニウムおよびマグネシウム合金板の高温粘 塑性変形

ここでは主に高温における降伏曲面(等塑性ひずみ曲 面)の実験結果について報告する.図9はアルミニウム合 金(A5083)について,種々の温度における等塑性ひずみ 曲面の実験結果(相当塑性ひずみ速度が10⁻²s⁻¹の場合)を 示したものである¹⁶.図中には種々の降伏関数(von Mises, Tresca, Hill48, Logan-Hosford, Barlat)による計算結 果も合わせて示している.これらの結果から, Logan-HosfordおよびBarlatの降伏関数による計算結果は 実験結果とよく一致していることがわかる.なお,これら のモデルに含まれる材料パラメータ(応力指数)は温度に よらず一定としてよいことがわかり,モデル化のうえでは 降伏曲面の大きさを温度の関数として与えればよいこと になる.なお,変形抵抗のひずみ速度依存性は,他の多

図9 A5083 の高温における降伏曲面¹⁶⁾

くの材料にみられるのと同様,温度が高くなるほど強くなった.ただし,A5083 では,室温から100℃前後で動的 ひずみ時効が起こり,この温度域ではわずかながら逆ひず み速度依存性が観察された

図10はマグネシウム合金板(AZ31)の種々の温度に おける等塑性ひずみ曲面の実験結果(相当塑性ひずみ速度 が10⁻²s⁻¹の場合)を示したものである¹⁷⁾.この材料につい てもA5083と同様にLogan-HosfordおよびBarlatの降伏関 数による計算結果は実験結果とよく一致していることが わかる.

5. 材料モデルの成形シミュレーションへの応用 5. 1 高張力鋼板のスプリングバック解析

図 11 は、ハット曲げスプリングバックにおける壁反りの解析を種々の材料モデルを用いて行い、実験結果 (590MPa級の高張力鋼板)と比較したものであるが、バ ウシンガー効果と繰返し硬化の材料挙動を正確に表現す る本モデルによる予測精度が最も良いことがわかる¹³⁾.な お、同様なことはS-レイルのねじれも含むスプリングバッ ク解析でも確かめている¹⁸⁾.

図 11 590MPa級高張力鋼板のハット曲げにおける壁 反りの実験結果と種々の材料モデルによる計算結果 の比較¹³⁾

5.2 アルミニウムおよびマグネシウム合金板の温間成 形限界の予測

アルミニウム合金板の変形抵抗と延性に及ぼす温度・ 速度の影響を明らかにし,成形シミュレーション結果と合 わせて温間成形性(FLD¹⁹⁾,深絞り²⁰⁾,引張り曲げ²¹⁾)予 測を可能とした.

マグネシウム合金板 (AZ31) は室温では六方稠密結晶 の非底面すべり抵抗が大きいため延性に乏しいが,温度上 昇とともにこの抵抗が急激に小さくなるため成形加工が 容易となる.本研究ではAZ31の変形抵抗と延性におよぼ す温度の影響を実験的に調べるとともに,プレス成形限界 について明らかにした²²⁾.

6. 結 言

本研究では、得られた主な結果を以下に列記する.

- (1) 冷延鋼板(SPCC)および高張力鋼板を用いて, 単軸引張り,面内繰返し引張り圧縮,二軸引張り試 験を行い,板材の持つ集合組織による初期異方性, 応力反転におけるバウシンガー効果,繰返し加工硬 化挙動を実験的に調査した.実用的に最も重要な高 張力鋼板については,バウシンガー効果が冷延鋼板 より顕著で,異方性はさほど強くなく Hill48 降伏関 数でほぼ記述できることなどがわかった.なお,二 軸応力非比例負荷における塑性挙動(降伏曲面)に ついての実験は従来の研究にみられないオリジナリ ティの高いものである.
- (2)上記の実験観察で得られる大ひずみ繰返し塑性挙動を忠実に表現できる異方性塑性構成モデルを提案した.このモデルは任意の異方性降伏関数を用いることができ、材料パラメータの決定法も明確で汎用性が高い.これを用いた繰返し応カーひずみ応答の数値シミュレーション結果は実験結果とよく一致し、本モデルの妥当性が確認できた.
- (3) このモデルを用いた高張力鋼板のスプリングバッ ク解析結果は実験結果とよく一致した.一方,バウ シンガー効果や繰返し硬化特性を適切に表現してい ない従来モデルを用いたスプリングバック予測の精 度は悪く、本モデルの優位性が確かめられた.
- (4) アルミニウム合金(A5083)およびマグネシウム合金板(AZ31)を用いて、種々の温度(室温~350℃)とひずみ速度(10⁴~10²s⁻¹)における単軸引張りおよび二軸引張り試験を行い、粘塑性挙動について実験的に調査した.これらの材料の高温における降伏曲面はLogan-HosfordあるいはBarlatの降伏関数で概ねよく記述できることがわかった.また、延性に関しても温度・速度依存性が強く、高温で低速変形ほど延性が高くなることがわかった.これらの特性を材料モデルで表現し、数値シミュレーションを実行することにより、温間プレス成形性(FLD,深絞り、引張り曲げなど)の予測が可能となった.

謝 辞

本研究は(財)天田金属加工機械技術振興財団の平成 14年度研究開発助成(AF-2002015)により成された.共 同研究者の日野隆太郎・上森武(広島大学)両氏には研究 全体をとおして研究遂行の尽力していただいた.中哲夫 (弓削商船高専),高津正秀・東健司(大阪府立大学)の 各氏からはアルミニウムおよびマグネシウム合金板の温 間材料挙動と成形性に関する実験で多大な協力を得た.な お,広島大学大学院工学研究科弾塑性工学研究室の院生・ 学生諸君にはすべての材料試験に協力していただいた.こ こに記し深く感謝いたします.

参考文献

- 1) 白鳥英亮·池上皓三:材料:16-165(1967),433.
- 2) 白井久雄・戸澤康壽:塑性と加工, **40-**457 (1999), 1041.
- 3) 桑原利彦・池田聡: 塑性と加工, **40-**457 (1999), 145.
- 4) Hill, R.: Proc. Roy. Soc., A193 (1948), 281.
- 5) Hill, R.: J. Mech. Phys. Solids, **38**-3 (1990), 405.
- Logan R. W., Hosford W. F.: Int. J. Mech. Sci., 19 (1977), 505.
- 7) Gotoh, M.: Int. J. Mech. Sci., 19 (1977), 505.
- 8) Barlat, F. et al : Int.J.Plasticity, **19** (2003), 1297
- Uemori, T, Okada, T., Yoshida, F.: Metals and Materials, 4(1998), 311.
- 10) 上森武・藤原賢司・岡田達夫・吉田総仁:塑性と加工, 42-480(2001), 64.
- 11)上森武・岡田達夫・吉田総仁:塑性と加工,43-498 (2002),639.
- 12) Yoshida, F., Uemori, T.: Int. J. Plasticity, 18 (2002), 661.
- 13) Yoshida, F., Uemori, T.: Int. J. Mech. Sci., 45(2003), 1687.
- 14) Yoshida, F., Uemori, T., Fujiwara, K.: Int. J. Plasticity, 18 (2002), 633.
- 15) 倉光徹・市丸隆志・上森武・日野隆太郎・中哲夫・吉田総仁:平成17年塑性加工春講論,(2005),125.
- Naka, T., Nakayama, T., Uemori, T., Hino, R., Yoshida, F.: Key Engineering Materials, **274-276** (2004), 937.
- 17)中哲夫・廣中智久・高津正秀・東健司・上森武・吉田 総仁:55回塑加連講論,(2004),123.
- (2004),135.
- 19) 中哲夫・鳥飼岳・日野隆太郎・吉田総仁:塑性と加工, 43-492(2002), 66.
- 20) 中哲夫・鳥飼岳・日野隆太郎・吉田総仁: 塑性 と加工, 43-497(2002), 551-555
- Naka, T., Hino, R., Yoshida, F.: Key Engineering Materials, 233-236(2003), 113.
- 22) Kohzu, M., Yoshida, F., Higashi, K.: Materials Science Forum, **419**-4 (2003), 321.