Report

M. Yamaguchi

1. まえがき

万物には表面があり、自然界には水がある。撥水性の 程度は、液体表面の接線と、固体表面がなす角のうちの 液体を含む側の角度で示される(接触角:理論限界:180°)。 150°を超える接触角を有する表面を「超撥水性」表面と 呼ぶ。

バイオミメティクスは、生命・生物の優れた機能や形 状を模倣して人工物へ適用し,技術革新を図ることを目 的としている。固体表面の構造が、その表面と接触する 液体との間に撥水性を生じさせることは、ハス (ロータ ス)の葉表面に現れる水玉等で古くから認識されていた が、電子顕微鏡の発明によりその詳細が観察できるよう になるまで、理論的研究はあまり進まなかった。'90 年 代から, 固体表面にマイクロ・ナノメートル領域の微細 で周期的な構造(以下,微細周期構造)を施すことで,濡 れ性を物理的に改善できることが,認識され始めた¹⁾。 面積が,数mmから数cm角の微細周期構造を対象とし た研究がなされてきたが、実用化に当たっては、その量 産技術を確立する必要があり、樹脂への射出成形は有望 な方法のひとつである。金型のマスターモールドの制作 方法としては、切削、レーザー加工、エッチング、選択 的メッキなどの方法が考えられる。しかし, 100 mm 角 を超える大面積の微細周期構造を形成するのは,コスト, 時間、再現性の面で容易ではない。

本研究では、フェムト秒レーザーの表面波干渉で780 nm ピッチの微細周期構造を金型表面に形成し、射出成形、 高い撥水性を有する100 nm 角の樹脂プレートの量産技 術を検討した結果について報告する。

2. 微細周期構造と濡れ性の相関

2.1 濡れ性の定性的理論

液滴が、固体表面にあるとき、固体-気体界面と液体 -気体界面によって、静的接触角 θ が定義される。接触 角 θ は、界面自由エネルギーが最小となる値を取るので、 Young の式として次式で表される。

$$\gamma_{SV} = \gamma_{LV} \cos \theta + \gamma_{SL} \tag{1}$$

ここに、 Y_{SL}, Y_{SV}, Y_{LV} は、固体-液体、固体- 気体、液体-*信州大学大学院 総合理工学研究科 生命医工学専攻 教授 気体界面の自由エネルギー ($\gamma_{LV} = 72.8 \times 10^3 \text{ mN/m}; \text{ } \pi$)。 付着仕事 W_A (mN/m)を用いると, Dupre の式は次式で表 される。

$$\gamma_{SL} = \gamma_{SV} + \gamma_{LV} - W_A \tag{2}$$

式 (1) と (2) により, Young-Dupre の式が導かれる。

$$\gamma_{LV} (1 + \cos \theta) = W_A \tag{3}$$

Berthelot は、付着仕事 W_A がそれぞれの相における凝集 エネルギーの平均で与えられると仮定した。

$$W_{A} = W_{SL} = 2\sqrt{\gamma_{SV} \cdot \gamma_{LV}} \tag{4}$$

Figure 1 Rough surface (periodic structure) and the two states. A: Pores filled with water, the Wenzel state. B: The drop rests on a composite of solid and air, the Cassie state.

フェムト秒レーザーによる超撥水表面の創製

昌樹 *

山口

これを式 (3) に代入すると, 接触角0 は最終的に次式で 表わすことができる。

$$\cos\theta = 2\Phi_{\sqrt{\frac{\gamma_{SV}}{\gamma_{LV}}}} - 1 \tag{5}$$

ここに, Φ: 補正係数,=1(水)。

この Young-Dupre の式は, 理想的な平滑面で成り立つ。 - Wenzel は, 粗さを有する固体表面上において, 凹部まで 水が浸漬する場合 (Fig.1A) には, 接触角は次式で表され るとした²⁾。

$$\cos\theta' = r(\gamma_{SV} - \gamma_{SL}) / \gamma_{LV} = r \cdot \cos\theta \tag{6}$$

ここに, θ : 平滑面における接触角 (°), θ': 粗面における接触角 (°),

r:見かけの表面積に対する実際の表面積の比。 同式より、物質固有の接触角が親水性($\theta < 90^{\circ}$)であれ ば粗面(周期構造)により一層親水性となり、撥水性($\theta >$ 90°)であれば粗面により一層撥水性になることが判る。 ただし、粗さが大きくなるとrの値も大きくなり、 cos θ 'が1以上になるため、この式はある程度の範囲でしか 適用することができないと考えられる。

Cassie は, 異なる 2 つの表面エネルギーをもつ表面の 接触角に関して以下のような式を示した³⁾。

$$\cos\theta' = f_1 \cos\theta_1 + f_2 \cos\theta_2 \tag{7}$$

$$f_1 + f_2 = 1 (8)$$

ここに、 f: 水とそれぞれの固体表面との面積分率,

θ: それぞれ固体の平滑面における接触角(°)。 添字の1と2は、それぞれの物質を表している。Fig.1B に示すように、片方の物質を空気とすると、空気中の水 の接触角は180°であるため、次式のように整理できる。

$$\cos \theta' = f_1 \cos \theta_1 + f_2 \cos 180^\circ = f_1 \cos \theta_1 - f_2$$
 (9)

同式から,固体との接触面積を減らし,空気との接触面 積の割合を増やすことにより,接触角を 180° に近づけ られることが判る。

2.2 微細周期構造と濡れ性の相関

微細周期構造の形状寸法と濡れ性の関連性を検証する ために、フォトリソグラフィの深掘り反応性イオンエッ チング (Deep-reactive-ion Etching; DRIE) でシリコン (Si) 表面に微細周期構造を作成したサンプル 12 個試作した (Table 1)⁴⁾。形状寸法パラメータは、ピッチτ (500 – 1000 nm)、歯幅 f_1 、溝幅 f_2 、深さ h (200 – 700 nm)、アスペクト 比 (f_1/f_2 、1 – 2) である (Fig.2)。

微細周期構造を有する Si サンプルを試作した (Fig.3, No.5)。SPM での寸法形状の計測結果より,設計値と実測

Figure 2 Parameter of the test-pieces with periodic structure fabricated on silicon by photolithography.

Table	1 The	12	different	test-pieces	to	evaluate	wettability
from m	easurer	nen	ts of the c	ontact angle	es.		

	Pito	ch τ	Dep		
	(ni	n)	(n:	Aspect	
No.	Designed	Measured	Designed	Measured	ratio (f_1/f_2)
1	1000	1056	700	703	1
2	1000	1029			2
3	1000	1259	500	514	1
4		1148			2
5	1000	1192	200	240	1
6	1000	1138	300	549	2
7	500	529	700	656	1
8	500	550	/00	030	2
9	500	620	500	473	1
10		536			2
11	500	592	300	212	1
12	500	558			2

Figure 3 SPM image of the scales of the test-piece No.5.

値の差異は、1 - 20% の範囲に収まっていることが判 った (Fig.4)。

Fig.5 には, 接触角の計算値と実測値を比較して示した (ここに, $r = (2h + f_2)/f_2$)。定性的には, Wenzelモデルと Cassie-Baxter モデルが示す傾向と, よく一致している。 Wenzelモデルでは, 物質固有の接触角が親水性 ($\theta < 90^\circ$) であれば周期構造面により一層親水性となり, 撥水性 (θ > 90°) であれば周期構造面により一層撥水性になること が判る (Fig.5A)。Cassie-Baxterモデルでは, 固体との接触 面積を減らして空気との接触面積の割合を増やすことに より,接触角を180° に近づけられることが判る (Fig.5B)。

平滑面の接触角を基準として、実測値の変化量を比較 したところ、 $\tau = 1000 \text{ nm}, h = 300 \text{ nm}, f_1/f_2 = 2 において、$ $接触角の増加量は最大となり、<math>55^\circ$ から $105.1^\circ \sim 50.1^\circ$ 増大 した。一方で、 $\tau = 500 \text{ nm}, h = 700 \text{ nm}, f_1/f_2 = 2 において、$ $接触角の減少量は最大となり、<math>55^\circ$ から 5° 以下 ($\equiv 0^\circ$ 、測 定不能) $\sim 50^\circ$ 減少した (Table 2)。すなわち、微細周期構 造のパターンのみを変化させることで、同一材質の固体 表面の接触角を、 100° 制御できたことになる。このよう な手法を用いれば、接触角が 150° を超える超撥水性や、 ほぼ 0° の超親水性を発現させることができる。

フェムト秒レーザーによる微細周期構造の加工 3.1 フェムト秒レーザーの表面波干渉

Birnbaum は、レーザー加工痕の底面に波長サイズの周 期構造ができることを偶然発見した⁵⁾。今日、この周期 構造は、入射光と表面にできるプラズマ波もしくは散乱 波との干渉によりできる定在波が、材料表面が選択的に 蒸発や浸食によって分解する現象 (アブレーション; ablation) と考えられている。周期構造のピッチ a は、レ ーザーの入射角 θ に依存して $a = \lambda/(1 \pm \sin \theta)$ の関係で変 化する^{6,7})。

Fig.6 には、フェムト秒レーザーで生じる表面波干渉と、 それを用いた微細周期構造形成の原理を示した。金属な どの特定の物質表面に、固体の熱緩和時間よりも短いパ ルス幅のフェムト秒レーザーを照射すると、物質に表面 プラズマ波が励起される。レーザーのエネルギー強度が 閾値を超えた部分で選択的にイオン放出が起こって加工 され、回折格子状の微細周期構造が現れる。この現象は、 自己組織的に形成されるので、表面内を走査しても、凹 凸の周期を一致させることができる。

3.2 金型作成

表面に 100 mm 角の微細周期構造を施した金型の試作 には,波長 780 nm のフェムト秒レーザー (チタンサフ ァイアレーザー, IFRIT,サイバーレーザー(㈱)を搭載し た加工装置を用いた⁸⁾。波長,パルス幅,走査速度,お よび1回の加工幅は,780 nm,210 fs,1.5 mm/s,2 mm で ある。走査は,一軸方向に行った。よって,100 mm 角 の実加工時間は 1 時間弱であった。金型母材 (SKD11, 日立金属工具鋼 (株),焼きなまし,硬さ 58.0 HRC) は,

Figure 4 Measured results of the surface of the test-piece No.5 using the SPM.

Figure 5 Comparison of contact angles between the theoretical and the experimental resulys. A Wenzel equation. B: Cassie-Baxter equation.

Table 2 Top data of the contact angles for both hydrophobicity and hydrophilicity in the 12 different test-pieces.

Hydrophobic	Flat surface	Hydrophilic
(Š)	٢	
105.1° (+50.1°)	55°	5° or less (-50°)
No.6		No.8

Ra=0.05 µm で磨き処理した。

Table 3 には、フェムト秒レーザーの表面波干渉で金型 鋼 (SKD11) 表面に作成した約 780 nm ピッチの回折格 子構造の電子顕微鏡写真を示した。電子顕微鏡写真と走 査型プローブ顕微鏡での形状測定において,約 780 nm ピ ッチの回折格子構造が、繋ぎ目なく形成されているのが 確認された。加工面の溝深さは 64.4 nm であり、少なく とも Ra = 0.05 µm 以下となる磨き加工による面出しが求 められていることが判った。

幅 3 mm に 780 nm ピッチで加工できたということは, 4,000 本の回折格子構造を走査速度 1.5 mm/s の高速で形 成できたことになる。Fe, Cr, Ni 等といった金属や, Si ウェハは,表面波干渉で微細周期構造を容易に加工でき る。表面波干渉で形成できる微細周期構造の形状は,光 束数によって変化させることが可能で,回折格子 (グレ ーティング)状以外にも,円・楕円ホールアレイ等が報 告されている。

4. 広面積撥水プレートの樹脂成形

4.1 射出成形

射出成形機 (Si-100 II, 東洋機械金属㈱) を用い, AES 樹脂を充填圧力 14,700 N, 時間 30 s で成形した。成形条 件は,保持圧力と保圧時間をパラメータとして 4 条件を 用いた (Table 4)。

4.2 接触角の測定

形状寸法の評価には、走査型プローブ顕微鏡 (SPM,

Nanocute, ㈱日立ハイテクサイエンス)を用いた。

濡れ性の評価として、マイクロスコープ (×100, VH-500, ㈱キーエンス)と画像解析ソフトウェア (Image J, オープ ンソース) で,静的接触角を測定した。

4.3 濡れ性の評価

Table 5 には,成形条件による接触角の比較を示した。 最も接触角が増大したのは,条件 B の成形品で,68.5°から97.4° に約 30°(43%)向上した(Table 6)。 撥水性の低い条件では,転写深さが不十分であることが確認された。

Fig.7 には、同一樹脂の非加工面と加工面に水を流した 時の液体の挙動を、比較して示した。加工面では、非加 工面に比べて流速は増し、流路の蛇行も少なくなり、液 滴の残存が観測されなくなった。

Figure 6 Principle of formation of a laser induced periodic structure using a femtosecond pulsed laser.

Surface roughness of the base material	Before laser processing	After laser processing	
$R_{\rm a} \ge 0.3 \mu{\rm m}$	2.000x 5.000zerry Wig 17.3mm		
$R_{\rm a} = 0.1 \mu{\rm m}$	т чур. турку 1		
$R_{\rm a} = 0.05 \ \mu{ m m}$	2.000 - 5-00 A may Wide 17.3mm 10kM		
$R_{\rm a} \le 0.05 \ \mu { m m}$ (withpolish processing)	2,000× 5,000yern, ₩0×17,30m, 10eM		

Table 3 Relationship between surface roughness of the base material and nano-periodic pattern (×2,000)

* The ellipse formed by the white dotted lines show defects in the processing areas.

4.4 環境暴露試験

樹脂プレートの環境暴露試験を実施し,転落角(sliding angle)と接触角ヒステリシス (contact angle hysteresis) を経 時的に計測することで評価した⁹⁾。転落角は,表面を傾 けた時に液滴が動き出す角度である。接触角ヒステリシ スは,表面を傾けた時に液滴が動き出す瞬間の前進接触 角と後退接触角の差である。転落角は表面の水はけ性の 指標として,接触角ヒステリシスはピン止め効果の指標 として用いられることが多い。ピン止め効果の原因は複 数挙げられるが,表面汚れでも接触角ヒステリシスは大 きくなる。

環境暴露試験 (2013 年 6 月 1 日~11 月 30 日) は,太陽 電池パネルの設置角度を参考にして,複数の試験板を 4 階屋上に 30°の角度で設置した。比較のために,微細周 期構造を施していないネガティブコントロール (フラッ ト試験板) も試験した。微細周期構造を有する試験板は,

溝を地面に垂直に配置した場合(溝垂直配置)と,溝を地 面に垂直に配置した場合(溝水平配置)の2通りを評価し た。

試験を通した平均温度は 20 °C, 平均湿度は 77%, 積算 降雨量は 1,228 mm, 平均紫外線量は 47 mW/cm² であっ た。色差 (ΔE*ab) は 2.4 から 10.5 へ増加し, 表面の汚 濁が認められた。

微細周期構造の溝深さは、溝垂直配置で 295 ± 79 nm から 175±47 nm へ41%減少した。これは、暴露により 表面が削られたためと考えられる。転落角は当初の 34.0° に対して、最大 20.0°、最小 38.8°の範囲に分布し、フラ ット試験板の 42.7°よりも常に低い値を維持し (Fig. 8)、 半年間に渡る水はけ性の向上が示された。接触角ヒステ リシス ($\cos\theta_R - \cos\theta_A$) は、溝垂直配置で最大 0.59、最小 0.36 の範囲に分布し、フラット試験板の 0.46 と大差なか った。これは、表面汚れが影響したためと考えられた。

5. 結論

本研究により、以下の事項が明らかとなった。

(1) 数百 nm から10 µm ピッチの微細周期構造を試作し, 撥水性や親水性が発現されることを,理論値と実測値の 比較を通して示した。素材本来が持つ化学的な撥水性に 加え,物理的な撥水性が重畳して発現することも示した。

Table 4Injection molding conditions of the keeping pressureand the time.

Condition	Without periodic structure	Periodic structure (difference)	
А		77.2°(+8.7°)	
В	(0.50	97.4°(+28.9°)	
С	08.5	94.9°(+26.4°)	
D		89.8°(+21.4°)	

Table 5 The contact angles on AES film surfaces.

Condition	Keeping pressure (N)	Time (s)
А	6,860	5
В	7,546	5
С	7,546	10
D	6,860	10

Table 6Contact angles on both the without and with periodicstructure.

(2) フェムト秒レーザーの表面波干渉を用いれば, 幅数 mm に数千本の微細周期構造を, 秒速数 mm という超高 速度で形成できることを実証した。微細周期構造の加工 コストを考えると, 10 ミクロン以上のピッチでは切削加 工でも対応でき, それを下回るピッチではフェムト秒レ ーザーの高速性という長所が生きてくる。

(b) without periodic structure

Figure 7 Comparison of water-repellency on the AES plastic injection-molded plates.

Figure 8 Time-course changes of the sliding angle and the contact angle hysteresis in an exterior environmental exposed durability test for 6 months (θ_A : advancing angle, θ_R : receding angle, error bar : standard deviation, SD).

(3) フェムト秒レーザーの表面波干渉と金型の射出成形で, 高い撥水性を有する広面積の樹脂プレートを試作できた。

今後の課題であるが、同一表面でも、時間的な変化を 考えない水滴の形状である静的な濡れ性と、斜めの平板 上での水滴の挙動である動的な濡れ性(滑落性)は異なる ことが多い。例えば、溝にエアトラップがある Cassie- Baxter モデルでは静的な撥水性、動的な滑落性ともに高くなる ことが多いが、溝にエアトラップが無い Wenzel モデル では、静的な撥水性が高くなる場合と静的な親水性が高 くなる場合の両方があり、そのとき動的には付着性が高 まり滑落性が低くなる場合もある。特に産業応用におい ては、動的な濡れ性の制御が求められる場合が多い。"濡 れ性"の問題は"動的"な界面の問題であるともいえる。

表面の濡れ性の改質は, Fig.9 に示すように汚れの付着 防止,積雪・着氷の防止,水滴除去,流体摩擦の低減等 に用いることができ,食品・衣料分野,医療福祉分野, エネルギー分野,輸送分野,安全・防災分野など,様々 な産業分野で技術革新をもたらすことが期待される。

謝辞

本研究は、平成23-25年度天田財団研究助成事業「フ エムト秒レーザーによる超撥水表面の創製」によって行 われた。

参考文献

 下村 政嗣: 生物の多様性に学ぶ新時代バイオミメ ティック材料技術の新潮流, Science & Technology Trends, 9-28 (2010).

Figure 9 Application to the society of wettability controlling technology.

- Wenzel RN: Resistance of Solid Surfaces to Wetting by Water, Industrial & Engineering Chemistry, 28(8), 988-994 (1936)
- Cassie ABD, Baxter S: Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944)
- Yamaguchi M, Sasaki S, Sasaki Y, Sasaki M, Chiba T, Itoh N, Ishikawa K: Threshold Levels for Wettability in Nano- and Micro-meter Periodic Structures, 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,SuA07.5, 6830-6833 (2013)
- 5) Birnbaum M.: Semiconductor surface damage produced by ruby lasers, J. Appl. Phys., 36(11), 3688-3689 (1965)
- 6) Campbell EEB, Ashkenasi D, Rosenfeld A: Ultra-short-pulse laser irradiation and ablation of

dielectrics, Materials Science Forum, 301, 123-144 (1999)

- Sakabe S, Hashida M, Tokita S, Namba S, Okamuro K: Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse, Physical Review B, 79, 33409-1-33409-4 (2009)
- 山口 昌樹, 佐々木 優聡, 佐々木 慎也: 微細周期 構造を有する広面積撥水プレートの樹脂成形, 第 24 回プラスチック成形加工学会年次大会, C-107, 127-128 (2013)
- Yamaguchi M., Kaneko Y., Sasaki M.: Fabrication of Nano-periodic Structure on Plastic Film for Water Repellent Using Femtosecond Laser, Transaction on Control and Mechanical Systems, 1(7) 306-311 (2012)