

電子ビーム加工機を利用した 金型鋼の表面改質

尚洋*

赤尾

T. Akao

1. まえがき

近年,自動車製造を中心としてハイテン等の高強度鋼の 搭載率が高まっており,この強度の高いハイテン等を成形 する冷間加工用金型や切削加工用工具の短寿命化が問題 となっている¹⁾.これを解決するための材料開発等さまざ まな技術開発が行われており,成果も現れてきている²⁾. しかしコスト面で言えば,従来用いられている金型鋼

(SKD11 等)の長寿命化処理の実現が求められている. このような目的の為,一般的には金型や工具鋼の表面に耐摩耗性・耐熱性に優れた硬質セラミックス (CrN, TiN, TiCN等)のコーティングが行われている.しかしながら, コーティング材料と母材間での熱膨張係数や熱伝導率な ど物性値の差による界面剥離等の問題から膜厚は 10μ m 程度に抑えられており,耐久性が大きな課題となっている. 一方,電子ビーム表面加工機は,電子ビーム(EB)を照射 し材料表面を局所加熱することにより,鏡面加工やバリ除 去加工,表面仕上げ加工などに用いられてきた^{3),4)}.さら に最近では,EB照射による熱間工具鋼の熱疲労特性の向 上⁵⁾,超硬合金の平滑化⁶⁾など幅広い応用研究が報告さ れている.

そこで本研究では図1に示す模式図のように,EB加工 機により母材表面において局所的高温を発生し母材合金 を溶融することで塗布した硬質セラミックス粉末と複合 化し,耐摩耗性に優れる皮膜を形成する手法を検討した. ここでは,まずEB照射により母材である金型工具鋼が受 ける影響を調査し,つぎに硬質セラミックス粉末を塗布し た試料に対しEB照射を行い,硬化複合層の形成およびそ の性質を調査した.

鉄鋼材料と硬質セラミックスの傾斜機能複合化は、これ までも SPS ⁿ や液相焼結法⁸⁾ 等により精力的に研究され ているが、ここで注目している EB 照射による溶融複合化 が実現されれば、既存の金型や工具に対して母材表面の深 さ方向に傾斜組成を持たせることが可能となり,母材とコ ーティング層との接合強度は大幅に改善され,比較的低コ ストで耐久性の高いコーティングが可能となる.また,超 硬合金皮膜の形成は高速フレーム溶射(HVOF)等でも報 告されているが⁹⁾,本手法で用いる EB 照射では局所加熱 が可能となるため,母材への熱影響が抑制できることから 精度の高い金型等にも適用でき,さらに真空中で行われる ため酸化物や窒化物の生成が抑制され高品質の皮膜形成 が期待される.

2. 実験方法

基板として用いる金型工具鋼は JIS(G4404)で規定され ている冷間金型鋼 (SKD11) および熱間工具鋼 (SKD61) を用意した.それぞれの化学組成を表 1 に示す.これらの 圧延板材 (厚さ 3 mm)を 10 mm 角に切断したのち,圧 延面を鏡面研磨した.EB 照射のみの影響を調査する際に は、この鏡面試料をそのまま用いた.次に金型鋼と複合化 させるセラミックス材料として、SiC (99.5%、2~3 μ m), TiN (99%、1~2 μ m),WC (99%、~5 μ m),および WC-Co 混合粉末を用いた.ここで WC-Co 粉末は WC 粉

図1. 電子ビーム照射による金型表面 への硬化複合層形成の模式図

衣 1. 平明九(用いた印創金生鋼(GAD11)わよい怒削金生鋼(GAD01)の指手組成 (W	表 1.	.本研究で用い	いた冷間金型鋼	(SKD11)	および熱間金型鋼	(SKD61))の化学組成	(wt.9
---	------	---------	---------	---------	----------	---------	--------	-------

	С	Si	Mn	Р	S	Cr	Мо	V
SKD11	1.40 ~ 1.60	~ 0.40	~ 0.60	~ 0.03	~ 0.03	11.00 ~ 13.00	0.80 ~ 1.20	0.20 ~ 0.50
SKD61	0.35 ~ 0.42	0.80 ~ 1.20	0.25 ~ 0.50	~ 0.03	~ 0.02	4.80 ~ 5.50	1.00 ~ 1.50	0.80 ~ 1.15

*福島工業高等専門学校機械システム工学科 特命准教授

図 2. EB照射処理(4mA)を施した金型鋼のSEM像 (a) SKD11表面, (b) SKD61表面, (c) SKD11断面, (d) SKD61断面

末に対し粒径 5 μ m の Co 粉末を 17 wt.%添加し、メカニ カルミリング処理を行い作製した.これらのセラミックス 粉末をエタノール中に分散しスラリー状にしたものを金 型鋼の研磨表面に筆を用いて塗布した.このとき、塗布さ れた粉末厚さが 50 μ m 程度となるようスラリー濃度を調 節した.乾燥後,電子ビームマルチ加工機(多田電機, e-Flush)を用い、EB 照射処理を 40 kV, 1~4 mA の出 力条件にて真空中(~1 Pa)で行った.また走査条件はピ ッチ 0.04 mm、周波数 10 kHz に固定し、これにより最終 的な走査速度を 0.4 m/s とした.試料評価として、光学顕 微鏡,SEM による表面および断面観察,XRD による相同 定、電子線プローブマイクロアナライザー(EPMA)によ る元素分析を行った.また照射による硬さの変化を調査す る為、断面深さ方向のマイクロビッカース硬さを荷重 10gf、15s 保持にて測定した.

3.1. EB 照射による金型鋼の微細組織、結晶相及び硬さ

3. 実験結果および考察

への影響

の表面および断面の SEM 観察結果を図 2 に示す. どち

らの金型鋼においても, EB 照射により表面付近に厚さ 40

図 3. 電流値を変化させてEB照射処理を施した金型鋼試料のXRDパターン(a) SKD11, (b) SKD61

 17 wt.%添加し、メカニ
 金型鋼とセラミックス粉末との複合化を試みる前に、ま

 こ.これらのセラミックス
 ず EB 照射により金型鋼母材が受ける影響を調査した.

 ラリー状にしたものを金
 EB 照射処理後(4mA)の SKD11 および SKD61 各試料

れている.

これらの加工層の構成相を確認する為,電流条件を変え EB 照射を行った各金型鋼試料に対し XRD 測定を行った 結果を図 3 に示す.まず SKD11 に注目すると, EB 照射 前および1mA照射の試料ではフェライト相(α相)の母 相に僅かな M7C3 が存在しているのに対し、2 mA 以上の EB照射では、すべてオーステナイト相(y相)に変化し ている.これは、上記の観察結果を考慮すると、EB 照射 により SKD11 が溶融する際, M7C3 も融解し, 均一な融 液となり、それが急速凝固する過程において、Cr(12%) および C(1.5%) が母相中に過飽和に固溶することで、 γ相が非平衡相として室温で準安定化した状態であると 考えられる.一方,SKD61においては,照射前後で母相 であるα相に変化は見られなかった.しかしながら、電流 値が 2 mA 以上の場合, 各ピークがブロードになってお り,表面観察からも示唆されるようにマルテンサイト変態 により微細なα'相バリアントが生成した組織であると考 えられる.

EB 照射した金型鋼に対し、表面から深さ方向のビッカ ース硬さを測定した結果を図 4 に示す. ここでは、金型 鋼と比較するため、純鉄(ME1F)に対する照射結果も示 してある.まず, 焼入れ前の SKD11 母材の硬さはおよそ HV 250 を示したが、EB 照射により表面から 50 µm 付近 より徐々に硬度が上昇し、表面付近ではHV 500 に達した. この硬化挙動はレーザー加工で確認されている硬度上昇 と一致する¹⁰⁾. また,上述の断面観察および, XRD の結 果より、この硬度上昇はマルテンサイト変態によるもので はなく、 γ 相中への Cr や C などの合金元素の固溶強化と 組織微細化によるものであると考えられる.一方, SKD61 に関しては、母相が HV200 程度であったのに対し、表面 から 50 µm 付近より急激に硬度が上昇し、表面付近では HV 700 に達している. ここでの硬度上昇は, SEM 観察 および XRD の結果より EB 照射後の冷却時におけるマル テンサイト変態による硬化が主な要因であると考えられ る. このように EB 照射のみによっても、金型鋼表面の硬

図 4. EB 照射処理した SKD11, SKD61 および純鉄
 基板の深さ方向の硬さ分布

さが上昇することがわかった.純鉄は EB 照射により特に 硬度が変化しなかったことから,EB 照射による加熱およ びその後の急冷により,合金元素が母相中に固溶し,組織 が微細化することで硬度が上昇したと言える.特に SKD61の場合に顕著な硬度上昇がみられたが,マルテン サイト変態に起因する表面起伏が生じる為,表面性状に大 きな影響を与えることが予想される.このため,これ以降 のセラミックス粉末との複合層形成の実験は,EB 照射に より均一な加工層が得られる SKD11 を用いて行った.

3.2. EB 照射によるセラミックス粉末と SKD11 母材との 複合層形成

次に, EB 照射により硬質セラミックス粉末を SKD11 表面に溶融複合化する実験を行った.本研究では,複合化 するセラミックス材料として,炭化珪素(SiC),窒化チ タン(TiN),超硬(WC)および超硬合金(WC-Co)の 各粉末を用いた.

まず,SiCおよびTiN 粒子を塗布し,EB 照射した試料 について断面観察をした結果を図 5 に示す.SiC に関し ては,表面に僅かに付着している様子がみられるが,基材 との複合化は生じていない.また,TiN については,一部 の粒子が基材内部に存在しており表面付近にも部分的に 複合化している様子が見られるが,充填量は非常に少なく コーティングとしては充分ではない.この要因として,こ れらのセラミックス材料が絶縁性を有しかつ低密度のた め,EB 照射時のチャージアップや熱衝撃により,ほとん どの粉末粒子が照射初期に飛散してしたため複合層が形 成されなかったと考えられる.一方,導電性および比較的 高い比重を有するWC 粉末を用いて同様の実験を行った ところ,表面での残存量は増大したものの,WC 粒子のみ が溶融凝固し,下層への熱流を遮蔽したため金型鋼が溶融

図 5. セラミックス粉末を塗布しEB照射処理 (4mA) したSKD11基板の断面SEM像 (a) SiC粉末, (b)TiN粉末

せず,ここでも溶融複合化は生じなかった.

次に Co をバインダーとして含む WC-Co 粉末を使用し た実験結果を示す. SKD11 試料に対し、WC-Co 粉末を塗 布し EB 照射 (4mA)を施した試料の表面および断面の SEM 像を図 6に示す.表面観察から,明るいコントラス トで示される WC が偏在している様子が見られ、断面に は加工層内に WC をリッチに含むコントラストの異なる 領域がマーブル様に存在している.この白いマーブル模様 を示す組織がWC-Coをどのように含んでいるかを確認す る為, EPMA により作成した元素マップを図 7 に示す. SEM 像に見られる加工層内の白い領域と対応するのは主 にWとCoの分布であり、Cは加工層内に比較的均一に 分散しており顕著に対応していないように見える.一方, この白い領域内では Fe や Cr と言った母材の元素濃度が 低い傾向が見て取れる.また,加工層全体に Coの成分が 含まれており、Co がバインダーとして機能していること が確認できた. さらに、このマーブル模様の界面はぼやけ ており、はっきりとした析出物-母相界面を形成せず、濃 度勾配を有する固溶体を生成していると考えられる.

次に、SKD11 に対し WC-Co 粉末を塗布した場合と、 塗布していない場合の EB 照射後の XRD パターンを図 8 に示す.WC-Co 粉末を塗布後 EB 照射した試料では、WC だけでなく W₂C が存在していることがわかる.また、母 材が EB 照射された際に生成する y 相も僅かながら見ら れることから、EB 処理表面全体が WC、Co および W₂C で覆われているのはなく、部分的に母材が露出しているこ とが示唆され、上記観察結果と一致する.WC だけでなく、 W₂C が存在していることから、W-C 系の状態図 ¹¹⁾より、 EB 照射により WC が分解する温度(> 2750°C)まで上 昇したのち、さらにその W₂C が溶融し、すでに溶融して いる母材および Co と融合し、それらが急速冷却時に固溶 体として凝固したものと考えられる.通常、WC-Co の状 態図 ¹²⁾ からは連続的な組成を有する固溶体は形成されな

図 6. WC-Co 粉末を塗布し EB 照射処理(4mA)した SKD11 の(a)表面および(b)断面 SEM 像

図 7. WC-Co粉末を塗布し EB 照射処理した SKD11 試料断面の面分析結果(元素マッピング)

図 9. SKD11 基板に各種セラミックス粉末を塗布し EB照射処理した試料における深さ方向の硬度分布

いと考えられるが、本研究で用いた EB 照射条件では溶融 状態からの急速冷却となるため、非平衡相として固溶体が 存在している可能性がある.また、2WC \rightarrow W₂C + C と 分解することにより余剰 C が存在していることが示唆さ れ、上記 EPMA の結果において C が加工層全体に分布し ている状況とも合致する.

図 9に WC-Co 粉末を塗布後 EB 照射した SKD11 試料 の深さ方向の硬度分布を示す.WC-Co の存在により図 4 で示した EB 照射のみの結果と比較して表面付近(~20 µm)での硬度が上昇し,最高で HV 1000 に達した¹³⁾. 通常の超硬合金の硬度は WC 粒径やバインダー組成によ り HV1000~1800 程度の値をもつことから,上記硬度上 昇の要因は,EB 照射により SKD11 表面において WC-Co と母材の溶融複合層が形成された為であると考えられる. また,WC-Co を含む複合層の形成に伴い,硬度が深さ方 向に傾斜分布している様子が見られるが,図 6(a)に見られ るように本実験で得られた複合層において WC の面内分 布の不均一性が大きいことから,深さ方向への傾斜組成に よる硬度変化だけでなく,WC リッチ領域の不均一分布 を反映しているものと考えられる.実用化の為にはWC 分布の均一性向上が不可欠である.

4. 結言

EB 照射により金型用工具鋼が受ける影響および, EB 照射を用いて硬質セラミックス粒子を基材との複合層を 形成する手法を検討したところ以下の知見を得た.

- (1) EB 照射のみを施した SKD11 の表面には、EB 照射 により溶融状態から急速凝固することにより微細な 樹枝状組織が形成され、CrやC等を過飽和に含んだ オーステナイト(γ)相として存在する.このγ相で は、組織の微細化と固溶強化により、硬度が HV500 程度まで上昇した.
- (2) SKD61 を用いた場合でも、VC 析出物が消失した均 ーな加工層が形成され、冷却時に生じたマルテンサイ ト変態により表面硬度が HV 700 に達した.

- (3) 硬質セラミックス粒子材料として, SiC および TiN を用いた場合,塗布された粉末粒子のほとんどが EB 照射時に飛散し,基材との複合層は形成されなかった. また,WC 粉末を用いた場合,粒子の飛散は抑制され たが,基材の溶融が妨げられたため複合層は形成され なかった.
- (4) WC-Co 粉末を塗布し EB 照射を行うことにより WC-Coと基板母材との複合層が形成された.ただし、 この複合層の形成は不均一であり、母材表面を完全に 被覆するには至らなかった.
- (5) 上記複合層が形成されたことで、表面付近 (~20 μm)の平均硬度が HV1000 程度に達した.

謝 辞

本研究は公益財団法人 天田財団による一般研究開発助成 (AF-2012012)の援助を受け実施されたものです.ここに 謝意を表します.また本研究は陳中春教授(鳥取大学), 音田哲彦准教授(鳥取大学),上原一剛准教授(鳥取大学 付属病院)との共同研究にて行われました.電子ビーム加 工機の利用に際しては多田電機㈱様のご協力を賜りまし た.ここに記して御礼申し上げます.

参考文献

- 1) 田村 庸: 塑性と加工, 50巻, 582号, (2009), 592.
- 久保田邦親,小松原周吾,扇原孝志,鳴海雅稔,山 岡美樹:日立金属技報,21巻,(2005),45.
- 3) 岡田 晃, 宇野義幸, 藪下法康, 植村賢介, P. Raharjo: 精密工学会誌, 69 巻, 10 号, (2003), 1464.
- 岡田 晃, 宇野義幸, 仁科圭太, 植村賢介, P. Raharjo, 佐野定男, 虞 戦波:精密工学会誌, 71 巻, 11 号, (2005), 1399.
- 5) 薩田寿隆: 熱処理, 52 巻, 4 号, (2012), 220.
- 化田良二, 岡田 晃, 宇野義幸, 郭 洪閣:精密工学 会誌, 76 巻, 12 号, (2010), 1393.
- M. Tokita : Mater. Sci. Forum, Vol. 423-425, (2003), 39.
- Z.Z. Fang and O.O. Eso : Scripta Materialia, Vol. 52, (2005), 785.
- 第田聖治,渡邊誠:高温学会誌,36巻,6号,(2010), 254.
- 10)田村武夫,大久保 努:精密工学会誌,66 巻,11 号, (2000),1797.
- A.S. Kurlov and A.I. Gusev : Inorganic Materials, Vol. 42, No. 2, (2006), 121.
- 12) C.M. Fernandes and A.M.R. Senos : Int. J. Refractory Metals and Hard Mater., Vol. 29, (2011), 405.
- 13) T. Akao, Y. Sakurai, T. Onda, K. Uehara, and Z.-C. Chen : Procedia Eng., Vol. 81, (2014), 1939.