

H. Ito

1. まえがき

高強度パルスイオンビームは、パルス電力技術と呼ば れる高電圧・大電力パルス発生技術を用いて発生されるパ ルス幅 100ns 程度でイオン電流が kA を超えるイオンビー ムを指す. 比較的容易に発生できる 100 A/cm²のビーム電 流密度であっても,従来のイオンビームと比べると電力密 度は格段に高い.このため、材料開発への応用を目的とし た研究開発が行なわれている.このようなパルスイオンビ ームを材料表面に照射すると、イオンの浸入深さ程度(数 百 nm:イオン種やビームエネルギーに依存する)の表面 層をパルス幅程度(数百ナノ秒)で断熱的に加熱すること ができる.加熱された表面層はビーム照射終了後,材料深 層への熱拡散で急速に冷却されることから,加熱と冷却の 速度が 10⁹deg/sec を超える超高速熱過程を実現できる. ターゲットの到達温度はターゲット材料,パルス幅,ビー ムイオン種,加速エネルギーに依存するが,例えば SiC にパルス幅 100 ns 程度の窒素等の中質量イオンを照射す る場合 100 A/cm²程度で 2000℃まで加熱することができ, 高速の熱プロセスによる再結晶化, アモルファス化, 注入 イオンの活性化などの効果が期待できる 1)-4). さらにパワ 一密度を増加させると,照射された固体表面層は気化温度 を超え,アブレーションプラズマと呼ばれる高フラックス の粒子束が生成される.これを利用することで高速の薄膜 生成が可能となる 5),6). これらの効果はパルスレーザーを 利用しても得られるが,パルスイオンビームは極めて効率 の高いエネルギー寄与, イオン種・エネルギーの選択によ る付与エネルギープロファイルの制御,イオン導入を同時 に期待できる、広い面積への同時処理などの特徴を有して いる.このため高強度パルスイオンビームの材料プロセス への応用が注目されている.

一方, 塑性加工において, 金型は製品の品質を決定す る重要なものであり, その製作には多くの時間とコストが 費やされている. 金型の製作において, 表面粗さの低減, マイクロクラックなどの表面欠陥層の除去, 形状精度改善 のために最終的には磨き仕上げが行われるが, ほとんどの 金型は複雑な形状をしているため自動化は困難であり, 手

高強度パルス重イオンビームの開発と 材料表面処理技術への応用

伊藤 弘昭*

磨き仕上げとなっている.そのため手磨き工程は熟練者の 技能に大きく依存し,長時間を要するため効率化改善が課 題となっている.また,金型は使用に伴って摩耗や変形し てしまうので,耐摩耗性を改善するために,硬質クロムめ っき,物理的蒸着法や化学的気相蒸着法による皮膜処理な ど様々な表面処理が施されている.この金型の消耗という 問題は従来からの課題となっている.

そこで、本研究は上述した高強度パルスイオンビーム の特徴を生かし、パルスイオンビーム技術のさらなる応用 として、金型材料への高強度パルス重イオンビーム照射に よる金型の表面仕上げと耐摩耗性向上などの表面改質処 理を同時に行うことができる新しい表面処理技術の確立 に向けた基盤技術の開発、および基礎的な研究を行ってき た.このような表面処理技術を実現するためには、多様な イオン種の発生、ビーム純度の向上、イオンエネルギー・ 電流密度の制御などが必要となり、これに対応したビーム 技術が必要である.しかし、従来のパルスイオン技術では、 誘電体の表面フラッシュオーバーを利用したイオン源を 用いているため、発生されるビームは主に陽子ビームであ り、また純度は通常のイオンビームに比べて格段に低い ^{7).8)}.このため、これらの材料分野への応用が大きく制約 されてきた.

本稿では、これまで開発してきた真空アーク放電¹⁰を利 用したイオン源を組み込んだ新しい高強度パルス金属イ オンビーム源、及びイオンビームのイオン純度向上および 多様なイオンビーム発生が可能なパルスイオンビーム発 生法である両極性パルス加速器(Bipolar Pulse Accelerator: BPA)^{11),12)}の結果についても述べる。最後 に、高強度パルスイオンビームを用いた表面処理技術実現 に向けて、その基礎的な研究として金属などの固体材料へ パルスイオンビームを照射してその有用性を検証したの で、それらの結果について述べる。

2. パルス重イオンビーム発生実験

2.1 パルス金属イオンビーム源

図1にパルスイオンビーム発生装置の断面構造を示す. 装置は真空イオンダイオードおよび加速パルス発生用同 軸マルクス発生器から構成されている.イオンダイオード は正の高電圧パルスが印加される陽極と接地電位に保持 される陰極から構成されている.陽極の内部にはイオン源 としてプラズマガンが設置されており,陰極は加速ギャッ プに電子絶縁のための横磁界を発生する磁気絶縁コイル として動作する.

加速電源として用いた同軸型マルクス発生器は、ドアノ ブ型のセラミックコンデンサを円筒状に配列した 2 ステ ージの構成で、各ステージの定格充電電圧は±60 kV であ る.発生器は絶縁油で満たされた直径 60cm⁴、長さ 80cm の円筒タンク中に設置されている.マルクス発生器のスイ ッチとして2個の電界歪型放電スイッチが使用され、これ らをトリガーすることにより負荷にパルス電圧を供給す る.出力定格は、開放端電圧 240 kV、合成容量 8.33 nF、 蓄積エネルギー240 J である.

図1 パルス重イオンビーム発生装置の概略図

図 2 は磁気絶縁ダイオードの構造を示す.ダイオード は先端が直径 60mm,長さ 115mm の円筒状の陽極,および 格子構造の陰極から構成されている.陽極内部にはイオン 源としてアルミニウム真空アークイオン源が設置されて おり,加速ギャップに向けて高密度プラズマが供給される. 陽極の先端には直径 60mm,厚さ 5mm のステンレス板が取 り付けられており,その中央部には直径 30mm の開口部が 設けられている.

陰極は、厚さ 1mm,幅 10mm のストリップ状の燐青銅板 で作製されており、加速されたイオンに対して高い透過率 を確保するため中心部は格子構造になっている.また、陰

図2 磁気絶縁ダイオードの概略図

極は加速ギャップに電子流絶縁用の磁場を発生させるために8の字形状の巻き線形状となっており,8ターンの磁場コイルとして動作する.磁場コイルには250µF,5kVのコンデンサバンクが接続されており,立ち上がり時間が50µsのパルス電流によって加速ギャップの中央部に0.8Tの均一な横磁場が発生する。実験はギャップ長 d_{A-K}=10mm,真空度5×10⁻³ Pa で行った。

図 2 の挿入図にパルスイオンビーム源用のイオン源と して使用された真空アークイオン源の電極構造を示す.電 極は円筒状の外電極と棒状の内電極からなる同軸構造と なっており,内電極を陰極,外電極を陽極としている.陽 極は内径 10mm,外径 15mm,陰極は外径 6mm で,何れも純 アルミニウム製である.陽極の先端には直径 5mm のアパ ーチャーが取り付けられており,テーパー状の陰極と陽極 アパーチャーとの間に 1mm の放電ギャップを形成してお り,この間で真空アーク放電が発生すると電極のアブレー ションによりプラズマが生成される.このイオン源の先端 は、ダイオードの陽極から 50mm 上流の軸上に設置され, 3.3µF, 30kVのコンデンサバンクで駆動する.

図3は装置動作時のダイオード電圧 (V_d),ダイオード 電流 (I_d),ビームのイオン電流密度 (J_i)の典型的な波 形を示す.実験はマルクス発生器の充電電圧を 50kV とし, アークイオン源の放電電流の立ち上がりから $\tau_d \sim 8 \mu s$ 後に加 速ギャップに高電圧パルスを印加した.イオン電流密度は,ア ノード電極から 50mm 下流に設置されたバイアスイオンコレクタ ー(BIC)で計測された.図より,ダイオード電圧と電流は ほぼ同時に立ち上がり,それぞれピーク値 220kV, 12kA となっている.このときイオン電流密度 J_i はダイオード 電圧 V_d の立ち上がりから約 45ns 後に立ち上がり,ピーク イオン電流密度 230A/cm²,パルス幅 40ns のパルスイオン ビームが得られていることがわかる.

図 3 ダイオード電圧 (V_d) , ダイオード電流 (I_d) , ビームのイオン電流密度 (J_i) の典型的な波形

次に、イオンビームのエネルギーとイオン種をトムソン パラボラ分析器(Thomson parabola spectrometer: TPS) を用いて評価した.図4にイオントラック検出プラスチッ クCR-39に記録されたトラックパターンの一例を示す.

図4 観測されたトラックパターン

分析器の質量分解能が不十分のため,重イオンについては 正確な電荷・質量比を評価することはできないが,アルミ ニウムイオンを仮定すると1価,2価,3価に対応する位 置にトラックが観測されていることがわかる.また,水素 原子イオンに対応する位置にもトラックが観測されてお り,A1 イオンおよび不純物である水素イオンが加速され ていると推定される.図4より,A1⁺,A1²⁺,A1³⁺,および H⁺のエネルギーはそれぞれ140-270keV,220-540keV, 300-740keV,170-190keVである.イオントラックの計数 により各イオン種の構成比の評価を行った.その結果,全 トラックに対するアルミニウムイオンの合計(A1⁺,A1²⁺, A1³⁺)の割合は89%と評価され,89%のイオン純度が得 られていることが分かった.この結果から,金属などの導 電性の固体をイオン源とした高強度パルス重イオンビー ム発生技術の開発に成功した.

2.2 両極性パルス加速器

これまで多種のイオン種を発生させるためプラズマガ ンをイオン源に用いたパルス重イオンビーム発生技術を 開発し,元素が気体,または金属である各種イオン種のイ オンビーム発生を可能にした.ビーム純度に着目すると, 開発されたビーム発生技術では90%前後であった.ビーム 純度 50~70%程度の従来のビーム発生技術に比べると純 度はかなり向上したが,さらなるイオン純度向上を目指し た新しいパルス重イオン加速器として両極性パルス加速 器の開発を行った.

図5にBPAの動作原理の概略図を示す。BPAは,接地電 位の陽極,ドリフト管,接地された陰極の三電極から構成 されている.加速用電源はドリフト管に接続されており, 負パルス(持続時間: τ₀)と正パルスの連なった両極性パル

図5 両極性パルス加速器の概要図

スが印加される.両極性パルス加速器の基本動作は,ドリ フト管に両極性パルスが印加されると,まず負極性の電圧 パルスが印加されるので,1st ギャップに到達したイオン ビームはドリフト管に向かって加速される(図5参照).そ の後,加速されたイオンビームの先端が2nd ギャップに到 達した時にパルスの極性が反転して正極性の電圧が印加 される.これによりイオンは2nd ギャップで再加速される. 従来のパルスイオンビーム技術に対して両極性パルス加 速器の主な特色は以下の通りである.

- (1) イオン源を接地電位とすることができる.
- (2) イオン種の質量差に伴う走行時間差を利用して不純 物イオンの除去が可能で、イオン純度の向上が期待で きる.
- (3) 2回の加速によりパルスパワー装置出力電圧の2倍の 加速エネルギーが得られる.さらに、ドリフト管を接 続することで、多段加速器に拡張することができる.

図 6 に実験に使用した実験装置の磁気絶縁ギャップの 概要図を示す.ドリフト管は電子絶縁用磁界コイルとして も動作し,加速ギャップに横磁界を生成する.高い伝送効 率を得るためにコイルの左右(陽極と陰極に面する面) は,それぞれ8本の燐青銅板からなる格子構造で,各燐青 銅板は直列に接続されており,8ターンのコイルを構成し ている。ドリフト管には高電圧が印加されるため,磁場発 生用のパルス電流は誘導的に絶縁されたコイルを介して 外部コンデンサバンク(500µF,5kV)から供給され,ギャ ップ間に0.7Tの電子絶縁用磁場を生成する.陽極内には イオン源としてプラズマガンが取り付けられている.

陽極表面から 50mm の位置 (ドリフト管内),および陰極 から 25mm に BIC を設置し,1st ギャップおよび 2nd ギャッ プで加速されたイオンビームの計測を行った.実験では, イオン源として窒素ガスパフプラズマガンを使用し,1st ギャップおよび 2nd ギャップのギャップ長を 10mm,絶縁磁 界強度 0.35T とした.

図7 に実験結果を示す. この結果は2個のBICを設置 して同時計測ができないため異なるショットのものであ る.図7(a)より、1st ギャップの下流では、イオン電流密度

図6 BPAの磁気絶縁ギャップ概要図

J₁₁=40A/cm², パルス幅~30 ns, が得られていることがわ かる.イオン電流密のピークは両極性パルスの負パルスの ピークから 45ns 遅れており、この遅れ時間から 1stギャッ プ加速後のイオンのエネルギーは、1価の窒素イオンを仮 定すると130keV程度と見積もることができ、この値は加 速電圧とほぼ一致する.一方,2nd ギャップ加速後のイオ ン電流密度 Jio は力性パルスの正パルスのピークから 11.5nsの遅れで2 A/cm²のピーク値,パルス幅~30 ns と いうパルスイオンビームが観測された.今回の実験で使用 されたドリフト管はエネルギー200keVの1価の窒素イオ ンに対して設計されたものであることを考慮に入れて、こ の時間差から、イオン種とエネルギーを評価すると、2価 の窒素イオンが 350keV 程度のエネルギーまで加速されて いると考えられ、2nd ギャップで特定のイオン種(窒素イ オン)のみが追加速されていることがわかった.この結果 から,両極性パルスによるパルス重イオンビームの多段静 電加速を実証することができた.なお、Jaは Jaに比べて 極めて低い値となっている. これはドリフト管の長さとビ ーム長が整合されていないこと, ビームの発散の影響によ りビーム管内でのビーム伝搬効率が低いことなどによる と考えられる.

3. パルスイオンビームの照射実験

開発したパルスイオンビーム発生装置を用いて金属材 料等への照射実験を行った.照射実験に使用したイオン種 は水素および窒素である.また,ターゲット材料としてス テンレス,軟鉄,銅,アルミニウムを使用した.

ステンレスターゲットにパルス窒素イオンビームを1 ショット照射した時の照射前後のターゲット表面の SEM 画像を図8に示す.ビーム照射前には明確な圧延痕がみら れるのに対し,照射後は圧延痕が完全に消え,表面が滑ら かになっていることがわかる.これはビーム照射によりス テンレス表面が一旦溶融し,その後再凝固したためだと考 えられる.

図 9 は上記ステンレスターゲットのイオンビーム照射 前後の X 線回折パターンを示す. 照射前にみられた Fe の ピークが照射後には完全になくなっており, CrFeNi の (200)面が顕著になっている. これはビーム照射によって

図8 ステンレス材料のビーム照射前後の SEM 画像

表面が溶融・再凝固したあるいは表面の一部がアブレーションしたことにより除去されたため、表面の結晶性が大き く変化したことを示唆している.次に、イオンビームのイ オン種や照射回数を変えた時、ステンレスターゲットの硬 度に及ぼす影響を調べた.その結果を表1に示す.ここで zとrはそれぞれ陽極先端からの距離と中心軸からの距離 を表す.表1より、いずれの照射条件においてもビーム照 射前に比べて硬度が低下していることがわかる.硬度の低 下はビーム強度の高い中心軸上(r=0mm)で著しく、ビー ム種では窒素の場合に大きく低下する傾向にある.また、 窒素についてはビーム照射回数が増加すると、硬度が低下 することがわかった.

図9 イオンビーム照射前後のX線回折結果

表1 ビーム照射後のビッカース硬度

照射位置	z=300 mm,r=0 mm	z=300 mm, r=40 mm
照射前	400 HV	
H ₂ 1 shot	358 HV	373 HV
N ₂ 1 shot	334 HV	346 HV
N ₂ 5 shot	249 HV	304 HV

軟鉄および銅ターゲットにパルス水素イオンビームを 1ショット照射した時の照射前後のビッカース硬度を表 2に示す.軟鉄においては、ビーム照射前後で硬度の変化 はほとんどなかったのに対して、銅ターゲットは大幅(約 19倍)に硬度が向上した.ステンレスターゲットと同じ ようにビーム照射前後のターゲット XRD で評価を行った 結果、銅ターゲットにおいて 220 面、200 面、111 面のピ ーク強度が 2~2.5 倍に増加した.一方、軟鉄については

試料	軟鉄	銅
照射前	157 HV	38 HV
H ₂ 1 shot	151 HV	728 HV

ビーム照射後,110 面のピーク強度が1.5 倍程度の増加が 観測された.

最後に、アルミニウムをターゲット材料にして高強度パ ルス窒素イオンビームの照射実験を行った.実験は最初に アルミニウム表面に形成されている酸化膜を取り除くた めにバフ研磨を行い、洗浄した後にビーム軸上の位置に設 置して照射実験を行った.イオンビームの照射回数は 3 回である.図10にビーム照射前後のアルミニウムターゲ ットのX線回折パターンの結果を示す.この結果から、パ ルス窒素イオンビーム照射によってアルミニウムのピー ク以外に窒化アルミニウムの 3 つのピーク AlN(002)、 AlN(110)、AlN(112)が現れているのがわかる.

図 10 Al ターゲットのビーム照射前後の XRD パター

4. まとめ

真空アークイオン源を使用したパルス金属イオンビ ーム発生技術の開発を行った.加速電圧 220 kV,電流 12 kA の条件で動作させた時. 陽極から 50 mm 下流で 200 A/cm² を越えるイオン電流密度が得られた.また,加速イオンの 分析を行った結果.イオンビームには1価から3価のアル ミニウムイオンと水素イオンが含まれており,アルミニウ ムイオンの比率(純度)は 89%であった.また,イオン 純度の向上が期待できる新しいパルス重イオン加速技術 である両極性パルス加速器の開発を行い,ガスパフ窒素イ オン源を用いた加速実験において,特定イオンのみが 1st ギャップおよび 2nd ギャップで加速されていることが確認 でき,両極性パルスを用いた静電多段加速を実証できた. 今後,電極構造等の改良を行い,より詳細に特性を評価す る必要がある.

ビーム照射実験の結果から,各種材料の表面状態を変化

させることができ,ターゲット材料とイオン種の組み合わ せによって、ビーム照射の効果が異なることがわかった. イオンのドーピング効果については今後検討する必要が あるが、この結果より、パルスイオンビームを利用した金 属など各種材料の表面改質への応用が期待できることが 示された.今後、この研究によって開発したパルス金属イ オンビーム発生技術は他の固体イオン源の開発にも拡張 でき、加えてこれまでに開発した気体用のガスパフプラズ マガンを用いたパルスイオンビーム発生技術と組み合わ せることで、多くのイオン種を発生させることができるの で、今後ターゲット材料(金型材料)にあったイオン種を 調べていく必要がある.目的にあわせてイオン種を選択す ることが可能となる.

謝 辞

本研究は、公益財団法人天田財団からの一般研究開発助成 により実施した研究に基づいていることを付記するとと もに、同財団に感謝いたします.

参考文献

- A. D. Pogrebnjak, G. E. Remnev, I. B. Kurakin, A. E. Ligachev, Nucl. Instrum. & Methods in Phys. Res. B 36, 286 (1989).
- G. E. Remnev and V. A. Shulov, Laser Particle Beam 11, 707 (1993).
- 3) D. J. Rej, H. A. Davis, M. Nastasi, J. C. Olson, E. J. Peterson, *et al.*, Nucl. Instrum. & Methods in Phys. Res. B 127/128, 987 (1997).
- 4) X. P. Zhu, M. K. Lei and T. C. Ma, Nucl. Instrum. Methods in Phys. Res. B 211, 69 (2003).
- K. Yatsui, X. D. Kang, T. Sonegawa, T. Matsuoka, K. Masugata, Y. Shimotori, T. Satoh, S. Furuuchi, Y. Ohuchi, T. Takeshita, and H. Yamamoto, Phys. Plasma 1, 1730 (1994).
- C. A. Meli, K. S. Grabowski, D. D. Hinshelwood, S. J. Stephanakis, D. J. Rej and W. J. Waganaar, J. Vac. Sci. Technol. A13, 1182 (1995).
- Y. Hashimoto, M. Yatsuzuka, and S. Nobuhara, Jpn. J. Appl. Phys. **32**, 4838 (1993).
- K. Masugata, H. Okuda, K. Yatsui and T. Tazima, J. Appl. Phys. 80, 4813 (1996).
- H. Ito, H. Miyake and K. Masugata, Rev. Sci. Instrum. 79 103502 (2008).
- 10) I. Brown, Rev. Sci. Instrum. 65, 3061 (1994).
- K. Masugata, Y. Shimizu, Y. Fujioka, I. Kitamura, H. Tanoue and K. Arai, Nucl. Instrum. & Methods in Phys. Res. A 535, 614 (2004).
- 12) H. Ito, K. Igawa, I. Kitamura and K. Masugata, Rev. Sci. Instrum. **78**, 013502 (2007).