

ステンレス箔に対する高温加熱・ガス圧成形 を利用した金型製造技術に関する研究

谷川 義博*

Y. Tanigawa

1. まえがき

通常,製品の量産には金型が使用される.金型の加工精 度は,その金型を使用して製作される製品の要求精度によ り決まるため,高精度な製品を製作するには,高や精度な金 型が必要となる.高精度金型を製作するには,高や精度の 工作機械と技術が必要となる.更に,量産性や生産コスト 低減の観点から,金型は多数個取り金型となるが,その取 り数は年々増加する傾向にある.多数個取り金型は,同一 形状を同じ精度で多数個加工する必要があるため,多くの 加工時間と精度維持のためのノウハウが必要となる.中で も,半導体関連製品や医療関連製品等の微細な製品の金型 では,微細工具を使用した加工になるため,これらの金型 製造には更に多くの技術やノウハウが必要となる.

一方,量産工場を海外へ移転したメーカーでも,研究開 発部門や試作部門は国内に残しているメーカーも多くあ る.さらに,前述のような,高い精度を必要とする部品に 関しては国内企業へ発注するメーカーも多い.

以上のことから,国内金型企業が今後諸外国に対し,競 争力を維持し,発展していくためには,試作及び量産に対 応可能で,従来工作機械による機械加工のみでは対応が困 難な,高精度金型を短時間で製作する新技術を開発してい く必要がある.

そこで著者らは,LED 用樹脂レンズ金型を製造する技術 として,高温に加熱した金型材にレンズ形状に加工したセ ラミックスを押し付け高精度な金型入れ子を作製する転 写金型製造技術を開発した.¹⁾

しかし,この転写金型製造技術は金型ブロック材にマス ター型形状を転写するため,1度の成形で軸対象形状製品 を1製品形状しか成形できなかった.

そのため本研究では,高温に加熱した SUS 箔を真空・圧 空成形を利用することで4つの製品形状を成形する4個取 り金型製造技術の開発を試みた.

2. 金属箔成形装置の開発

2・1 高温真空成形を利用した金型製造工程

本研究で開発を目指す高温真空成形を利用した金型製 造技術の工程を図1に示す.

工程 1). SUS 箔と製品形状であるマスター型を真空チャン バー内にセットする.この際,真空チャンバーは SUS 箔を

* 福岡県工業技術センター機械電子研究所生産技術課 精密加工チーム長

境に A 槽 (チャンバーA) と B 槽 (チャンバーB) に分かれ た状態となる.

工程 2).A 槽を真空,B 槽を不活性ガスで加圧した状態で SUS 箔を軟化温度まで加熱して,A 槽側に設置したマスタ 一型を上昇させ SUS 箔に押し当てマスター型形状を転写 する.

工程 3). SUS 箔冷却後, A 槽, B 槽を大気開放し SUS 箔を マスター型から離型する.

工程 4). SUS 箔をチャンバーから取り出し, 裏面にバック アップ材を取り付け, 不要箇所を取り除き金型入れ子が完成する.

以上4工程が今回開発を目指す金型製造技術である.

図 1. SUS 箔成形工程

2・2 SUS 箔成形装置の設計・製作

次に, SUS 箔成形装置の設計・製作を行った.装置構成 及び上下チャンバー部外観をそれぞれ図2,図3に示す.

図 2. SUS 箔成形装置構成図

図 3. SUS 箔成形装置チャンバー部外

本技術における SUS 箔の加熱は、チャンバー内に SUS 箔をセットした状態で行う必要がある.また、SUS 箔の成 形性を向上させるには、SUS 箔が十分に軟化する温度まで 加熱する必要があるため、目標加熱温度を1000℃とした.

過熱水蒸気を加圧ガスとする超塑性アルミニウム合金 ブロー成形技術の開発が行われているが、成形温度は 500℃~600℃の範囲である。²⁾ しかし、今回成形する材料は SUS 箔であり、前述のよう に目標加熱温度を 1000℃としている。このため, SUS 箔の 昇温には, 短時間で目標温度に昇温可能な通電加熱方式を 用いることとした.通電加熱の電源には, 直流 TIG 溶接機 YC-300BZ2 (Panasonic 社製)を使用した.マスター型を 設置した下部ステージの移動には, 電動シリンダーユニッ ト DRS60SG-05MKA (オリエンタルモーター社製)を用いた.

SUS 箔の加熱には通電加熱方式を使用しているため, SUS 箔はセラミックス治具で挟み込み固定しており,この セラミックス治具を上部チャンバーと下部チャンバー間 に固定することで SUS 箔を境に上下チャンバー内を真空 状態と加圧状態に維持した状態で SUS 箔を加熱可能な構 造としている.

3. 実験方法

3·1 SUS 箔加熱実験

製作した装置に SUS 箔をセットして, 通電加熱による昇 温実験を行った. 箔厚 50 μ m, 80 μ m, 100 μ m の異なる厚 さの SUS 箔を電極間距離 75mm で装置にセットし, チャン バーB を取り外した状態で, 供給する電流値を 200A~260A まで変化させ, その時の SUS 箔温度を測定した. SUS 箔温 度の測定は, 上面からチノー社製サーモビジョン CPA-8200 を使用し行った. SUS 箔の厚さや電流値により最 高温度までの到達時間は異なるが, 全ての条件において加 熱開始 5 秒以内に安定し最高温度まで到達した. その時の SUS 箔表面温度を図 4 に示す. 昇温の際, チャンバーA は 7×10⁻³Pa の高真空状態となっている.

図 4. 電流値と SUS 箔表面積の関係

図4に示すように、SUS 箔温度を1000℃まで上昇させる のに必要な電流値は、箔厚 50µmで162A、80µmで223A、 100µmで262Aと箔厚が薄い方が低い電流値でも高温に加 熱され、グラフの傾きから電流値の変化の影響を受けやす いことが分かる.

板材を高温に加熱してプレス成形を行うホットスタン ピングにおいて板材がポンチに接触した際の板材の温度 低下が課題となっている.³⁾⁾本研究においても図1に示す ように高温に加熱した SUS 箔をガス圧を使いセラミック スマスターに押し付け形状を転写するため,温度低下が生 じると予想される. このため加熱した SUS 箔をセラミック スマスターに接触させ、その時の SUS 箔温度の変化をサー モビジョンで測定した. 今回通電加熱に使用した電源の仕 様は最大 290A となっており、箔厚 100µmの SUS 箔は図 4 に示しように 1098℃までしか昇温できない. このため、 セラミックスマスター接触時の温度低下等を考慮すると 今回の実験では箔厚 100µmの SUS 箔の使用は厳しいと判 断し今後は箔厚 50µmと 80µmの SUS 箔を使用することと した.

実験は、 $50 \mu m \& 80 \mu m on SUS 箔表面の温度をサーモビ$ ジョンの測定値でそれぞれ 1165℃、1168℃まで加熱した状態でセラミックスマスターに接触させ、その時の温度低下について調べた. その結果を図 5 に示す.

図 5 に示すように室温から 1165 ℃まで加熱した後, セ ラミックスマスター型が接触すると, SUS 箔表面温度はそ れぞれ, 箔厚 80 µm は 696 ℃, 50 µm は 698 ℃に低下する. SUS 箔にセラミックスマスターが接触した状態で加熱を 継続すると 25 秒で箔厚 80 µm の SUS 箔表面温度は 881 ℃, 50 µm の SUS 箔は 770 ℃まで SUS 箔表面温度は上昇した. このセラミックスマスター接触後の温度上昇の差は, 加熱 している SUS 箔体積の違いによる熱容量の差によって生 じていると思われる.

図 5. .SUS 箔厚さの違いによる マスター接触後の温度状況

3・2 ガス加圧による SUS 箔変形実験

本装置を使い短時間で SUS 箔を高温まで加熱可能であ ることが確認できたため,次にセラミックスマスターを取 り付けない状態での SUS 箔の変形実験を実施した.チャン バーAを高真空状態にし,チャンバーB にアルゴンガスを 供給することでチャンバーB内を加圧した状態で,SUS 箔 を加熱し成形させその時の変形量を調べる.SUS 箔を固定 する上下のセラミックス治具には中央部に□20mmの貫通 穴が空いており,チャンバーB側の穴から任意の圧力で加 圧した状態で,SUS 箔を加熱することで SUS 箔は A チャン バー側(下方向)に図6に示すような凸形状に変形する. この際,供給する電流値とガス圧力値を変え SUS 箔の変 形量に与える影響を調べた.変形量の評価は三鷹光器社製 非接触形状測定装置 NH-3SP を使い,図6に示すように変 形した SUS 箔凸形状部中央の断面形状を測定しその高さ で比較することとした.

図 6. 変形した SUS 箔測定箇所

厚さの異なる SUS 箔に対し図4の結果を基に SUS 温度が 同程度となるように、箔厚 50μmでは電流値を150A~170A, 箔厚 80μでは 220A~250A とした. 加熱時間は 10 秒とし、 ガス圧 0. 2MPa~0. 5MPa で実験を行った. 電流値と変形高 さの関係を図7に示す.

図 7. SUS 箔変形量に対する電流値とガス圧の影

同一圧力での変形高さを比較すると, 箔厚 50 μ m の方が 材料強度が小さい分, 変形高さは高くなっており容易に変 形できることが分かる. 50 μ m, 80 μ m ともに変形高さ 5mm を超えると SUS 箔に小さな穴が空いたり破れたりしてし まうため, □20mm ポケットの治具を使用して変形させた 場合の変形限界高さを 5mm と設定した.

50µmと80µmのSUS 箔を比較した場合,50µmの方が 各ガス圧での電流値に対する変形高さの影響が大きいた め,SUS 箔が破れずに大きく変形させるための条件設定範 囲が狭くなり,最適条件の設定が厳しく取り扱いが難しく なる.

図8に厚さ80µmのSUS 箔に対し,ガス圧0.2MPaから 0.7MPaで変化させて加圧した状態で,電流値220A(955℃) で加熱した時のSUS 箔変形部の中心から半分の断面形状 と,SUS 箔の非定常熱伝導解析結果を示す.

図 8. SUS 箔変形実験断面形状(□20mm 治具)

ガス圧 0.2MPa から 0.7MPa まで変化させると、変形高さ は異なるが、どの場合も図 8 の青色の破線で示すようにセ ラミックス治具の□20mm ポケットエッジ部から 3mm 程度 の箇所までと、その内側では変形状態に違いが生じており、 その位置での SUS 箔温度は解析結果で 500℃程度となって いる.

この様に SUS 箔に不均一な変形が生じたのでは高精度 な成形は不可能である.この不均一な変形は,SUS 箔の熱 が接触しているセラミックス治具へ放熱され,SUS 箔の温 度が中央部に対し,セラミックス治具近傍が低くなるため だと考えられる.高精度な金型入れ子を作製するためには, 金型入れ子外周寸法である□20mm 範囲内での SUS 箔の変 形を均一にしなければならない.そのためには,□20mm 範囲内での SUS 箔の温度のばらつきを低減する必要があ る.セラミックス治具への放熱による温度低下が接触部か ら 3mm 程度であり,□20mm 範囲内の温度を均一にするた めには,治具ポケット寸法を中央部から片側 3mm 以上大き くすれば良いと思われる.そこで,セラミックス治具ポケ ット寸法□30mm,□35mm の場合の電流値 220A での SUS 箔 表面温度の非定常熱伝導解析を行い,ポケット寸法□20mm での解析結果と比較を行った.その結果を図9に示す.

図 9 に示すように,同じ電流値でもポケット中心部での SUS 箔温度解析結果は,□20mm で 960℃であるのに対し, □30mm では, 1060℃,□35mm では 1090℃と高くなること が分かる.また,中心部から10mmの位置でのSUS 箔表面 温度解析結果は,□30mm 位置では700℃,□35mm では, 866℃と,図8における変形状態に違いが生じる箇所の温 度よりも高く昇温されることが分かる。

図 9. 異なるポケット寸法での SUS 箔表面温度解析結果

この結果から,ポケット寸法を図 10 に示すように下側 治具□30mm,上側治具□37mm としたセラミックス治具を 作製し,成形実験を行った.

図 10. ポケット寸法を拡げたセラミックス治具

図11に図10の治具を使用して,ガス圧0.2MPaと0.4MPa で加圧した状態で,電流値220A(955℃)で加熱した時の SUS 箔変形断面形状を示す.

図 11. SUS 箔変形実験断面形状(□30mm 治具)

図 11 に示すように、治具ポケット寸法を大きくするこ とで、治具エッジ部から 3mm 程度で生じる形状の変化は図 8 と比較して滑らかになっており、変形高さも大きくなっ ていることが分かる.これは、治具ポケット寸法を大きく することで,□20mm 範囲内の SUS 箔表面温度のばらつき が低減するとともに,同領域内でセラミックス治具への放 熱量が低下したことにより,到達温度が高くなったため, □20mm 範囲内での SUS 箔の変形が,□20mm ポケット治具 使用時よりも均一に変形したためだと推察できる.

図 12 に□20mm ポケット治具及び 30mm ポケット治具を 使用して厚さ 80 µ m の SUS 箔を加熱したときの SUS 箔表面 温度を示す. 200A から 260A の範囲内で,□20mm 治具での 加熱より□30mm 治具を使用した方が高い温度に昇温可能 なことが確認できる.

図 12. セラミックスポケット寸法の SUS 箔温度へ

3·3 平面マスターを用いた SUS 箔成形実験

これまで得られた SUS 箔変形実験の結果を基に, 金型入 れ子外周形状を成形する実験を実施した.入れ子外周形状 はコーナーR3mmの□20mmで,高さ1.5mm以上とした.こ の形状を成形するためには,変形高さ5mmとなる変形量が 確保できれば十分である.SUS 箔成形装置電動アクチュエ ーター上部にセラミックス平面マスターを固定し,厚さ $80 \mu m$ のSUS 箔の変形高さが5mmとなるように,でチャン バーB内を 0.35MPa に加圧した状態で,220Aを通電し $1060 \ Cに加熱し SUS 箔成形実験を行った.図13 に示す下$ 治具□20mm ポケットから平面マスター上面までの距離 Lを加熱開始前から 1.91mm で固定し,加圧,加熱を行った.断面形状を図14 に示す.

平面マスターは加熱開始前から L=1.91mm で固定した状態で,変形高さ5mm となる成形条件で成形してもSUS 箔は□20mm×1.9mm の内側に押し付け成形することができな

図 13. 平面マスターまでの距離 L (mm)

図 14. 平面マスター固定状態での成形実験

次に平面マスターを L=4.56mm に固定した状態で加圧, 加熱を開始し,平面マスター上昇前に十分な表面積が確保 できるように変形させた後,マスターを L=1.91mm まで上 昇させて成形を行った. その結果を図 15 に示す.

セラミックス治具ポケット寸法(20mm)

図 15. 平面マスター加熱後移動での成形実験結果

平面マスターを下げた状態で,SUS 箔を変形させた後平 面マスターを上昇させることで,加熱前から平面マスター を上昇させた状態より□20mm×1.9mmの内側にSUS 箔を充 填できることが分かる.しかし,図 13 でのL=1.91mmの高 さは測定位置 0 の位置から破線までの高さであるが,図 15 に示すように□20mm ポケット位置まで十分に成形でき ておらず,更に深い位置まで押し込まれている.これは, ポケット形状を□30mmとすることで,図 11 に示すように 変形形状は滑らかになったが,□20mm 領域内での温度分 布が生じているためだと思われる.今回の実験では予めチ ャンバーBを加圧した状態から SUS 箔を加熱するため,SUS 箔全体が目標温度に到達する前に徐々に変形し,セラミッ クス治具に接触した時点で放熱を開始し SUS 箔に温度分 布が生じたためだと思われる.

そのため, SUS 箔を□20mm 範囲内で図 11 より更に均一 に変形させるため, チャンバーB を真空にした状態で SUS 箔の加熱を開始し, □20mm 内の SUS 箔温度が目標温度に 到達した後 (加熱開始 5 秒後) 加圧する実験を行った. 図 16 に電流値 220A で加熱した後, ガス圧 0.4MPa で加圧し た時の断面形状を示す.

加熱後に加圧することで、□20mmの治具ポケットエッジ部から段差無く変形していることが確認できる.変形高

さが図 10 の結果と比較して低くなるのは, SUS 箔が加熱 された状態でチャンバーB 側にガスが流入することによ り SUS 箔が冷却されたためだと思われる.

図 16. 加熱後加圧で成形した SUS 箔断面形状

そのため,加熱前の加圧と後加圧で同じ変形高さになる よう,前加圧はガス圧 0.3MPa,電流値 200A,後加圧は 220A, 0.4MPa と異なる条件で成形した時の断面形状を図 17 に示 す.

図 17. 前加圧-後加圧成形形状比較

加熱後、加圧することで、□20mm の治具エッジ部から 均一に変形しており,前加圧とは形状が異なることが確認 できる.

図 15 の平面マスターを用いた成形実験と同じ電流値 (220A)とガス圧(0.35MPa)で加熱,加圧の順序を逆に して成形形状を比較した.その結果を図 18 に示す.

図18. 平面マスター成形実験における加圧順序の

今回の実験条件では、前加圧も後加圧も図 18 に示すように□20mm×1.91mm内前面に SUS 箔を押し込むことはできなかったがその結果には違いが生じた.2つの工程での

成形結果を比較すると、後加圧は□20mm ポケットのエッ ジ部から全面がポケット方向に変形しているのに対し,前 加圧では図 15 同様エッジ部近傍は逆方向に押し込まれて いる.これは前加圧の方が□20mm 内の変形量が大きいが, 温度分布が生じるため平面マスターで押し込んだ際,□ 20mm ポケット内に広がらず,余分な SUS 箔が逆方向に押 し込まれたためである.しかし,図 17 の結果及び図 18 からも分かるように後加圧ではポケット内側前面に SUS 箔を押し付けるだけで表面積を確保するのは加熱温度,ガ ス圧力の関係から困難だと思われる.そこで第一工程とし て前加圧で十分な表面積を確保した後,第二工程として, □20mm の範囲内を均一に加熱した状態でチャンバーB 内 にガスを充填し,SUS 箔を均一に変形させながら横方向に 広げポケット内側に押し付ける方法を用いることとした.

第一工程として平面マスターを L=5.2mm で固定し 0.5MPa で加圧した状態で,210A で10 秒加熱後 L=3.15 ま で上昇して一旦加熱,加圧をストップし,L=4.06 まで下 降させる.第二工程で,230A で5 秒加熱した状態で1.1MPa に加圧しL=1.67まで上昇させた.断面形状を図19に示す.

前加圧成形と後加圧成形を組み合わせることで,図 19 に示すように□20mm のエッジ部から SUS 箔が変形し凹形 状の壁部に沿って成形されることが分かる.測定位置 10mm の箇所で形状が変形高さ 0mm になっているのは側面 壁部が垂直であるための測定エラーによるものである.

3・4 小型電子スイッチ形状成形実験

これまでの実験結果を基に小型電子スイッチ形状 4 個 取り金型をモデルとした成形実験を行った.図 20 にモデ ル形状を示す.製品形状部の高さは 0.19mm である.

図 20. 小型電子スイッチ金型モデル

マスター型材料には黒崎播磨㈱社製高純度アルミナセ ラミックス MA995 を使用した.成形工程を表1に示す.

工程	SUS温度	圧力		L
0	20°C	1.1MPa	4.5mm	
1	938℃	1.1MPa	2.5mm	L
2	300°C	0MPa	3.5mm	
3	1284°C	1.35MPa	2mm	
4	300°C	0MPa	2.5mm	マスタ
5	1334°C	0MPa	1.5mm	
6	1334°C	1.4MPa	1.5mm	

表1. 小型電子スイッチ成形条件・工程

加熱された SUS 箔がマスター型に接触した時点で放熱 により温度が低下するが、3.1 で述べたように一定時間加 熱を継続すれば再度上昇することが確認できている. 平面 マスターを使った予備実験において、厚さ 80µm の SUS 箔を使用して再上昇温度が 1000℃となる条件を調べた結 果 13000℃で1分以上の過熱が必要なことが分かった. こ のため表 1 の最終加熱温度及び継続時間は 1334℃で1 分 40 秒とした.

図 21 に示すように、入れ子外周部である凹形状に関しては□20mm で形状転写はできたが、製品部形状である高さ0.19mmの凸形状部は形状底面隅部まで SUS 箔を押し込めておらず、高精度に転写することができなかった.この様な微細形状細部の転写ができなかったのはガス圧不足が原因と思われる.

セ 4. まとめ

今回の研究で以下の結論を得た.

- 通電加熱を利用した金属箔の真空・圧空成形装置を開発した。
- 2) 金属箔の成形には、予め成形に必要な表面積を確保する工程と確保された金属材料をマスター型表面意押し付ける工程が必要であることが分かった。
- 3) 開発装置を使った成形では凹形状は精度よく転写で きるが凸形状は圧力不足のため底面隅部の形状が転 写できなかった.
- 4) 高精度の成形にはSUS箔のセラミック治具及びマスタ 一型接触時のSUS箔温度低下対策が重要であることが 分かった。

謝 辞

本研究は、公益財団法人天田財団からの一般研究開発助成 により実施した研究に基づいていることを付記するとと もに、同財団に感謝いたします.

参考文献

1) 谷川義博・中村憲和・他6名:2008年度精密工学会秋

季大会学術講演会講演論文集, 73-74(2008)

 2)三戸正道・小林政義・安田星季:北海道立工業試験場研 究報告, No. 308, 83-96

3) 瀬沼武秀: 天田財団受精研究成果報告書, Vol. 24, 52-56

図 21. 小型電子スイッチ成形実験結果