Review

CNC 材料試験機によるチューブハイドロフォーミング用 実用円管材の塑性変形特性の研究

桑原 利彦*

輸送機器の軽量化技術として、チューブハイドロフォーミ ング(THF)が注目されている^{1),2)}.チューブハイドロフォー ミングでは、素管は複雑な変形履歴を受ける.そのため、FEM シミュレーションを援用した、破断やスプリングバックなど の高精度な予測と、それに基づく工程の最適化が、今後の重 要な技術課題となろう³⁾.シミュレーションの高精度化のた めには、材料の弾塑性変形挙動を精度よく再現できる材料モ デル(構成式)の構築が必要であり、そのためには、材料の 変形挙動を測定・評価するための材料試験技術を確立するこ とが必須である.

1. 緒言

多軸応力を受ける金属円管の塑性変形挙動を測定する実験 手法としては、円管試験片に引張り、ねじり、内圧の組合せ 荷重を負荷する手法が一般的である⁴⁾.本研究で研究対象と するアルミニウム系材料についても、その塑性変形挙動に関 する研究が数多く報告されている.線形^{5)~7)}および複合応力 経路⁸⁾における加工硬化特性,前負荷後の後続降伏曲面^{9)~11)}, 線形および複合ひずみ経路における成形限界^{12),13)}などが報 告されている.しかし自動車用部材として用いられる大径の 押出し円管材について、降伏初期から破断に至る広範なひず み範囲において、二軸応力下における加工硬化挙動(応力-ひずみ曲線)を精密に測定し、その塑性変形特性を明らかに した研究はない.

筆者らは,THF に用いられるような大型の実用円管材を対象として,その弾塑性変形挙動を大ひずみ域まで精密に測定できる CNC サーボ制御二軸応力試験機を開発し,内圧と軸力を受ける低炭素鋼管の塑性変形特性を明らかにした¹⁴⁾.

本研究では、上記試験機を用いて、線形応力経路のもとでの、A5154-H112 押出し円管材の初期降伏曲面ならびに応カー ひずみ曲線を精密に測定し、その塑性変形挙動を精度よく再 現するための異方性降伏関数を同定することに成功したので 報告する. さらに線形および複合応力経路における A5154-H112 押出円管および鋼管の成形限界線(FLC)および 成形限界応力線(FLSC)の実測に成功したので合わせて報告 する. 特にFLSCの実測は世界初の研究成果である.

さらに筆者らの研究グループは、本試験機を活用した板材 の二軸応力試験方法を新たに開発したので、その有効性につ いても述べる.

*東京農工大学大学院工学研究院先端機械システム部門 教授

2. 実験方法

2.1 供試材

供試材は、外径 76mm、公称肉厚 3.8mm のアルミニウム合 金 5154-H112 押出し円管材である. 応力制御試験 (2.3 節参照) から得られた、管軸方向(ϕ 方向)および円周方向(θ 方向) の単軸引張真応カー対数塑性ひずみ曲線を図1 に示す. 図中 の破線は、 $\sigma_{\phi} - \varepsilon_{\phi}^{0}$ 曲線を Voce の式¹⁵⁾ で近似した曲線である. また同試験より同定された、管軸方向および円周方向の機械

図1 管軸方向(のおよび円周方向(の)の単軸引張応力-ひずみ 曲線

表 1	供試材の機械的	性質
11 1		노 코

Tensile	$\sigma_{0.2}$	с *	<i>n</i> *	α^*	r**
Direction	/MPa	/MPa			
ϕ	93	522	0.39	0.008	0.36
θ	93	536	0.37	0.007	0.59

* Approximated using $\sigma = c(\alpha + \varepsilon^p)^n$ for $0.001 \le \varepsilon^p \le 0.20$.

** Measured at uniaxial plastic strain $\varepsilon^{p} = 0.10 \sim 0.20$.

図2 円周方向の肉厚分布の測定結果

的性質を表1に示す.円周方向の塑性流動応力および r 値が 管軸方向のそれよりも大きく,本供試材は明瞭な塑性異方性 を有することがわかる.なお,押出し円管材の塑性異方性に ついては,同様の測定結果が文献¹⁰に報告されている.

素管の肉厚分布を測定したところ,図2に示すように,不規 則なばらつきが確認された.肉厚のばらつきは,平均肉厚 3.87mmのおよそ±1.1%であった.

2.2 サーボ制御二軸応力試験機

本研究で用いた CNC 二軸応力試験機¹⁴⁾を図3に示す.対向する油圧シリンダによって軸力Tを,増圧器により内圧P を負荷する.軸力はロードセルにより,内圧は圧力計により 測定される.本試験機の特徴は,軸力と内圧の閉ループ制御 により,任意の真ひずみ経路もしくは真応力経路を円管試験 片に負荷でき,しかもひずみ速度もしくは応力速度を任意の 値に設定できる点である.

管の試験部長さ(チャック間距離)は 160mm とした. 円管 の変形は、図4に示すように、自作の曲率計と塑性域ひずみゲ ージ(東京測器研究所製 YFLA-2)を用いて測定した. 曲率計 は、管中央に位置する変位計と2本のツメから構成され、変位 計とツメの先端位置の偏差量から、円管外表面の管軸方向の曲 率半径 R_{ϕ} が測定される. ツメの間隔は 46mm と決定した(予 備実験において R_{ϕ} が安定して測定できる間隔として決定). 曲 率の測定を容易にするために、パンタグラフ型の等変位機構¹⁷⁾ によって、円管試験片はつねに試験機中央に維持される.

図4 曲率計とひずみゲージの配置

塑性域ひずみゲージは、曲率計の設置位置近傍において、管 軸方向および円周方向にそれぞれ1枚を貼り付けた.今回の実験 では、肉厚がほぼ平均値に近くかつ局所的な極大値を示す位置 (図5においてθ=285°の位置)にひずみゲージを貼りつけた.

図5 応力経路創成用フィードバック制御回路

管軸方向および円周方向の真ひずみ \mathcal{E}_{ϕ} , \mathcal{E}_{θ} は, 次式により, 管中央部における肉厚中心の値に換算して測定値とした.

$$\varepsilon_{\phi} = \varepsilon_{\phi S} - \ln \frac{R_{\phi}}{R_{\phi} - (t/2)} \tag{1}$$

$$\varepsilon_{\theta} = \ln \frac{D - t}{D_0 - t_0} = \ln \frac{D_0 \exp(\varepsilon_{\theta S}) - t}{D_0 - t_0}$$
(2)

ここで、 $\mathcal{E}_{\phi S}$ および $\mathcal{E}_{\theta S}$ は管中央外表面において測定された 管軸方向および円周方向の真ひずみ、 D_0 および t_0 は変形前の 円管の外径および肉厚、Dおよび t は変形中の管中央におけ る外径および肉厚である.肉厚 tは、体積一定条件より、次 式を用いて算定した.

$$t = t_0 \exp(-\varepsilon_{\phi} - \varepsilon_{\theta}) \tag{3}$$

ただし、式(3)において弾性ひずみ成分は無視している.

管軸方向および円周方向の真応力成分 σ_{θ} , σ_{θ} は, 管中央 部の微小要素に関するつり合い式に基づいて, 次式より, 肉 厚中心の値として算定した.

$$\sigma_{\phi} = \frac{P\pi (D/2-t)^2 + T}{\pi (D-t) t}$$
(4)

$$\sigma_{\theta} = \frac{(R_{\phi} - t)(D - 2t)}{(2R_{\phi} - t)t} P - \frac{D - t}{2R_{\phi} - t} \sigma_{\phi}$$
(5)

真応力制御試験用の閉ループ制御回路を図3に示す.5つの実験値 *T*, *P*, ε_{θ} , R_{θ} が PC に取り込まれ,それらの値から管中央部の管軸方向真応力 σ_{θ} および円周方向真応力 σ_{θ} が算定される. それらの応力値は PI コントローラに入力され,応力の指令値との誤差に基づいて, σ_{θ} の制御信号として軸力 *T*の指令値が, σ_{θ} の制御信号として内圧*P*の指令値が0.01 秒ごとに出力される(応力の指令値は0.1 秒ごとに更新される). それらの指令値は実験値と比較され,その誤差に基づいてサーボ弁が制御され,油圧シリンダおよび増圧機がそれぞれ駆動される.

軸力と内圧の測定分解能は、各々7N、1kPa、ひずみの測定 分解能は 6 µε である. これらの実験値は 0.3 秒毎にハードデ ィスクに保存され、データ整理作業に用いた.

2.3 実験方法

二軸応力を受ける供試材の塑性変形特性を定量的に評価す るため、線形応力経路における等塑性仕事面¹⁸⁾の測定を行っ た.応力比は σ_{θ} : σ_{θ} = 1:0, 4:1, 2:1, 4:3, 1:1, 20:23, 3:4, 1:2, 1:4, 0:1 の 10 通りとした.応力比 20:23 は、本供試材の塑性ひず み増分ベクトルの比 $d\varepsilon_{\theta}^{p}$: $d\varepsilon_{\theta}^{p}$ がほぼ1:1になる応力比である. 塑性仕事と塑性流動応力の関係式としては、管軸方向の単軸 引張試験から得られた真応力ー対数塑性ひずみ曲線を基準と した.すなわち、管軸方向の単軸引張試験において、管軸方 向の対数塑性ひずみ ε_{0}^{p} が既定値に達するまでになされた単 位体積当たりの塑性仕事 W_{0} を測定し、他の応力比においては、 W_{0} と等量の塑性仕事を与える応力点($\sigma_{\theta}, \sigma_{\theta}$)を主応力空間 にプロットして等塑性仕事面を求めた.試験片の負荷速度は、 von Mises の相当応力速度に換算して 0.35 MPa/s 一定とした.

3. 実験結果

3.1 等塑性仕事面の測定結果

等塑性仕事面の測定結果を図6に示す.試験数は、応力比 1:2 で3、その他の応力比で2とした.図中のプロット点はそ の平均値を示す.同一の ε_0° に対する応力の実験値のばらつき は、応力比1:2において塑性流動応力の8%であったが、その 他の応力比では最大でも2~3%であった(応力比1:2におい てのみ測定値のばらつきが大きくなった原因は現段階では不 明).図6(a)の各プロット点に付随する線分は、その応力点に 達した瞬間における塑性ひずみ増分ベクトルの方向を示す (3.2節参照).図6(b)は、図6(a)の応力の実験値を、当該の ε_0° に対応する管軸方向単軸引張真応力 σ_0 で除して無次元化 したものである.

比較のために、図6(a)においては次数8のHosford^{19,20)}およびBarlatらの提案による降伏関数²¹⁾(以下Yld2000-2d)に 基づく降伏曲面を、図6(b)においては、von Mises, Hillの2 次²²⁾および次数8のHosfordの降伏曲面を併記した.

等塑性仕事面は応力比 20:23~3:4 方向に張り出した形状を有し ている. Yld2000-2d による降伏曲面形状はこの傾向をよく捉えて おり,特に $\varepsilon_0^p = 0.002$, 0.01, 0.025 における等塑性仕事面とほぼ 一致している. Hosford による降伏曲面と等塑性仕事面との一致の 度合いは, $\varepsilon_0^p \le 0.1$ の応力比 1:1~3:4 において Yld2000-2d に比べ てやや劣る.等塑性仕事面との最大誤差は, Hosford の降伏曲面に おいて 7%, Yld2000-2d の降伏曲面において 4%であった.

図 6(b)に示される無次元化等塑性仕事面の測定結果を見る と,応力比 1:1,20:23,3:4 においては等塑性仕事点の位置がや やばらついているが,その他の応力比においては,等塑性仕 事点はほぼ同一点に集中している.これより,本供試材はほぼ等方的に硬化することがわかった.

3.2 塑性ひずみ増分ベクトルの方向の測定結果

各応力比における塑性ひずみ増分ベクトルの方向の実験値 と、各種降伏条件式による計算値(当該応力比における降伏 曲面の法線ベクトル方向)の比較を図7に示す.ここで、応 力比は応力経路の方向 φ で表現している(管軸方向単軸引張

 $\varepsilon_0^p = ● 0.002; \bigcirc 0.01; \blacksquare 0.025; \square 0.05; ▲ 0.075; △ 0.1; ◆ 0.15; ◇ 0.2; ▼ 0.25; ♡ 0.3.$

 図7塑性ひずみ速度の方向の測定値と理論降伏曲面に対する 外向き法線ベクトル方向の計算値との比較.
 ε₀^p = ● 0.002; ○ 0.01; ■ 0.025; □ 0.05; ▲ 0.075; △ 0.1; ◆ 0.15; ◇ 0.2; ▼ 0.25; ⊽ 0.3.

りが $\varphi = 0^{\circ}$,等二軸引張りが $\varphi = 45^{\circ}$,円周方向単軸引張りが $\varphi = 90^{\circ}$).Yld2000-2dによる計算値は ε_{0}° 毎に異なるため,代 表値として $\varepsilon_{0}^{\circ} = 0.15$ における計算値を示している.

まず実験値に着目すると,図6(a)に示される等塑性仕事面 の測定範囲において,塑性ひずみ増分ベクトルの方向の最大 値と最小値の差は,応力比によらず6°以下であった.すなわ ち応力比が一定であれば,塑性ひずみ増分ベクトルの方向も ほぼ一定方向に維持されることがわかった.また,応力比1:1 において塑性ひずみ増分ベクトルの方向は27±2°と測定さ れ,顕著な塑性異方性が確認された.ちなみに,応力比20:23 (*q*=49°)において,本供試材の塑性ひずみ増分ベクトルは ほぼ45°となることがわかった.

Hosford および Yld2000-2d による計算値の差は小さく, どちらも実験値の傾向をおおよそ再現できている. ただし, どちらの降伏条件式でも, 応力比 20:23 および 3:4 で実験値との 誤差が最も大きかった. 実験値との誤差は, Hosford の降伏条 件式において最大で 10°, Yld2000-2d において最大で 7° であった.

3.3 成形限界線および成形限界応力線の測定結果

ひずみ空間にプロットした成形限界線 (FLC: Forming Limit

Curve)が、成形限界の判定基準としてしばしば用いられている.しかし、FLC はひずみ経路に依存して変化することが、 実験^{29)~32)}および理論解析^{33)~35)}によって明らかにされている. よって、非直線的なひずみ経路では、破断の判定基準として FLC を用いることは不適切である.一方、成形限界時の真応 力を主応力空間にプロットして得られる成形限界応力線

(FLSC: Forming Limit Stress Curve) はひずみ経路に依存しな いとの報告がある^{30,31)}.もしこれが真実であるならば、変形 履歴の如何にかかわらず、FLSC を破断判定の基準として活用 することができ、実用上の価値は高い.しかし板材の FLSC を実測した研究報告はない.

本研究で開発したサーボ制御二軸バルジ試験機を用いて, 線形および複合応力経路における A5154-H112 押出円管³⁷⁾お よび鋼管³⁸⁾の FLC および FLSC を測定した.その結果,FLC はひずみ経路に依存して変化するが(図8),成形限界応力を 応力空間にプロットすると,ひずみ経路にかかわらず,それ らはほぼ同一曲線上に載ることを立証した(図9).

ただし、等方硬化モデル³⁴⁾および異方硬化モデル³⁵⁾を用いた Marciniak-Kuczyński 理論³⁹⁾(MK 理論)に基づく計算によれば、FLSC がひずみ経路に依存しないのは、複合応力経路における予ひずみ後の材料の応力-ひずみ曲線が、線形応力経

図 8 A5154-H112 押出円管の(a)線形応力経路および(b, c)複合応力経路における成形限界線³⁷⁾. e:管軸方向, e:円周方向.

図 9 線形応力経路から決定された成形限界応力線(FLSC)と複合応力経路に対して実測された成形限界応力の比較. (a)A5154-H112 押出円管³⁷⁾.(b)電縫鋼管(冷牽・焼準済み)³⁸⁾. σ_θ:管軸方向真応力, σ_θ:円周方向真応力.

路におけるそれと一致する場合であり、このことは文献 ³⁷⁾に おいて実験的にも確認されている.一方両者が一致しない場 合には、複合応力経路における成形限界応力は線形応力経路 から決定された FLSC と一致しない ³⁸⁾ (図 9(b)における $\sigma_{\phi}:\sigma_{\theta} = 1:10$ に対する成形限界応力の実験値を参照).材料の 異方性の主軸と応力の主軸が一致しない場合についても注意 が必要である ³⁵⁾.

4. その後の研究展開

-ニ軸バルジ試験方法の開発-

十字形試験片に付与できる最大塑性ひずみ ε_{max}^{p} は、材料の n 値が小さいほど小さい⁴⁰⁾. 例えばn 値が 0.1 前後の純チタン 板では、 $\varepsilon_{max}^{p} = 0.002$ 程度である⁴¹⁾. これに対し伊敷ら^{41),42)} は、純チタン板をロール曲げした後、板縁をレーザ溶接して 円管試験片を製作し、2節で詳述したサーボ制御円管バルジ 試験機³⁶⁾を用いて線形応力経路を負荷し、 $\varepsilon_{0}^{p} = 0.085$ までの 等塑性仕事面の測定と材料モデリングに成功した.

さらに筆者らの研究グループは,円管試験片用の二軸ひずみ 計測システムを新たに考案し,金属板材の二軸応カーひずみ曲 線が連続測定できる,「二軸バルジ試験方法」を開発した^{43),44)}. 二軸バルジ試験方法の最大の特長は,任意の応力経路に対して 板材のFLSCが実測できることである.

冷延 IF 鋼板 (SPCE) の二軸バルジ試験結果を図 10⁴⁴⁾に示 す.線形応力経路に基づいて $\varepsilon_0^p = 0.36$ までの等塑性仕事面の 測定に成功した (図 10(a)).等塑性仕事面の形状は,塑性仕 事の増大に伴い,平面ひずみ引張近傍から等二軸引張の領域 において膨張傾向を示している.これは,平均 r 値がおよそ 1.5 以上の冷延鋼板に共通の傾向である⁴⁵⁾.また等塑性仕事面 は 6 次の Yld2000-2d とほぼ一致した.

FLC と FLSC の測定結果をそれぞれ図 10(b), (c)⁴⁴⁾に示す. 同図には、 $\varepsilon_0^{d} = 0.005, 0.15, 0.36$ の等塑性仕事面とほぼ一致する Yld2000-2d (図 10(a))を MK 理論に適用して得られた計算値も併記している. $\varepsilon_0^{d} = 0.15, 0.36$ の等塑性仕事面に対応する Yld2000-2dから計算された FLC と FLSC はどちらも実験値と 概ね一致している.これより,MK 理論による成形限界解析 の妥当性および二軸バルジ試験に基づく材料モデリングの有 効性が実験的に立証された.

破断後の試験片を図 11 に示す. $\sigma_x: \sigma_y = 1:1$ の場合のみ溶 接部で亀裂が発生し、母材の成形限界には至らなかった. 任 意の二軸応力引張状態においても、十分な強度と延性を有す る溶接部の形成が今後の課題である.

図11 図10(b, c) における破断後の試験片⁴⁴⁾.

5. 結 言

- 1. 円管材に任意のひずみ経路もしくは応力経路を負荷できる CNC サーボ制御二軸応力試験機を開発した.
- 2. A5154-H112 押出円管および鋼管を供試材として,線形お よび複合応力経路における加工硬化特性,成形限界線 (FLC)および成形限界応力線(FLSC)の実測に成功した.
- 3. FLC はひずみ経路に依存して変化するが,成形限界応力は, ひずみ経路にかかわらず,線形応力経路から決定された FLSC とほぼ一致することを立証した.
- 4. 円管試験片用の二軸ひずみ計測システムを新たに考案し、 金属板材の二軸応カーひずみ曲線が連続測定できる、「二 軸バルジ試験方法」を開発した. 二軸バルジ試験方法の最 大の特長は、任意の応力経路における、板材の FLSC が実 測できる点である.
- 5. 冷延 IF 鋼板に対して測定された FLC と FLSC は,

図 10 冷延 IF 鋼板 (SPCE) の二軸バルジ試験結果⁴⁴⁾. (a)等塑性仕事面, (b, c)成形限界線(b)および成形限界応力線(c) の実験値と計算値の比較. (b), (c)における+は液圧バルジ試験による測定値.

Yld2000-2d 降伏関数に基づく MK 理論による計算値と概ね よい一致を示した.これより MK 理論による成形限界解析 の妥当性および二軸バルジ試験に基づく材料モデリング の有効性が立証された.

本研究の遂行にあたり有益な御議論を賜った高橋進教授 (当時日産自動車株式会社,現在日本大学),黒田充紀教授(山 形大学),吉田健吾博士(山形大学)に厚く御礼申し上げます. 本研究の一部は,公益財団法人天田財団,MEXT 科研費,新 日本製鐵株式会社(当時)の御支援を受けた.

さらに、4 節で述べた二軸バルジ試験機の開発においてご 支援を頂いた、国際計測器株式会社代表取締役社長松本繁氏、 田代和義氏、真崎明夫氏、森本康之亮氏に深甚なる謝意を表 します.また二軸バルジ試験方法の開発において、貴重な御 助言と御議論を賜った、(社)日本鉄鋼協会鋼管二次加工性評 価試験方法の標準化研究会委員各位、平成23年度経済産業省 アジア基準認証推進事業二軸バルジ試験方法産学官連携委員 会委員各位ならびにThomas B. Stoughton 博士 (GM, Technical Fellow) に深甚なる謝意を表します.

参考文献

- 最近のチューブフォーミング技術と自動車への適用 小特集号:塑性と加工, 39-453 (1998), 997-1053.
- 2) 淵澤定克: 塑性と加工, 41-478 (2000), 1075-1081.
- Takahashi, S., Terada, K., Morita, T. and Matsubara, N.: SAE SP-1686, (2002), 7-13.
- 4) 池上皓三: 材料, 24-261 (1975), 491-504.
- 5) Osgood, W.R.: J. Appl. Mech., 14 (1947), A147-153.
- Stout, M.G., Hecker, S.S. and Bourcier, R.: Trans. ASME, J. Engng Mater. Technol., 105 (1983), 242-249.
- Takeda, T.: Trans. ASME, J. Eng. Mater. Technol., 115 (1993), 77-82.
- Marin, J., Hu, L.W. and Hamburg, J.F.: Trans. ASM, 45 (1953), 686-709.
- 9) Hecker, S.S.: Met. Trans., 2 (1971), 2077-2086.
- 10) Hecker, S.S.: Met. Trans., 4 (1973), 985-989.
- 白鳥英亮・池上皓三・金子堅司・吉田総仁・小池茂 幸:機論(第1部),41-352 (1975),3430-3437.
- 12) 淵澤定克·竹山壽夫: 精密機械, 45-1 (1979), 106-111.
- 13) 森 茂樹・真鍋健一・西村尚:塑性と加工, 29-325 (1988), 131-138.
- 14) Kuwabara, T., Ishiki, M., Kuroda, M. and Takahashi, S.: Journal de Physique IV, 105 (2003), 347-354.
- 15) Voce, E.: Metallurgia, 51 (1955), 219-226.
- 山田賢治・水越秀雄・岡田英人:51 回塑加連講論, (2000), 349-350.
- 17) 白鳥英亮·池上皓三: 材料, 16-165(1967), 433-439.
- 18) Hill, R., Hecker, S.S. and Stout, M.G. : Int. J. Solids Struct., 31-21 (1994), 2999-3021.

- 19) Hosford, W.F.: Proc. 7th NAMRC, (1979), 191-197.
- 20) Logan, R.W. and Hosford, W.F.: Int. J. Mech. Sci., 22-7(1980), 419-430.
- 21) Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. & Chu, E.: Int. J. Plasticity, 19 (2003), 1297-1319.
- 22) Hill, R: Proc. Roy. Soc. London, A193 (1948), 281-297.
- 23) 桑原利彦・池田聡: 塑性と加工, 40-475(1999), 145-149.
- 24) 桑原利彦・山田修也・飯塚栄治・比良隆明:鉄と鋼,
 87-4 (2001), 198-204.
- 25) Kuwabara, T., Van Bael, A. and Iizuka, E.: Acta Mat., 50-14 (2002), 3717-3729.
- 26) 桑原利彦・池田聡:鉄と鋼, 88-6 (2002), 334-339.
- 27) Kuwabara, T. and Van Bael, A.: Proc. 4th NUMISHEET Conf., (1999), 85-90.
- 28) Hershey, A.V.: Trans. ASME, J. Appl. Mech., A21 (1954), 241-249.
- 29) 中島浩衛・菊間敏夫・蓮香要:製鉄研究, 264 (1968), 1-29.
- 30) Arrieux, R., Bedrin, C. & Bovin, M.: Proc. 12th IDDRG Congress, (1982), 61-71.
- 31) Stoughton, T.B.: Int. J. Mech. Sci., 42 (2000), 1-27.
- 32) Graf, A. & Hosford, W.F.: Int. J. Mech. Sci., 36 (1994), 897-910.
- 33) Kuroda, M. & Tvergaard, V.: Int. J. Mech. Sci., 42 (2000), 867-887.
- 34) Yoshida, K., Kuwabara, T. & Kuroda, M.: Int. J. Plasticity, 23 (2007), 361-384.
- 35) Yoshida, K. & Suzuki, N.: Int. J. Plasticity, 24 (2008), 118-139.
- 36) 桑原利彦・成原浩二・吉田健吾・高橋進:塑性と加 工, 44-506 (2003), 281-286.
- 37) 吉田健吾・桑原利彦・成原浩二・高橋進: 塑性と加 工, 45-517 (2004), 123-128.
- 38) 吉田健吾・桑原利彦:鉄と鋼, 92-1 (2006), 36-45.
- 39) Marciniak Z. & Kuczyński, K.: Int. J. Mech. Sci., 9 (1967), 609-620.
- 40) Hanabusa, Y., Takizawa, H. & Kuwabara, T.: J. Mater. Process. Technol. , 213-6 (2013), 961-970.
- 41) 伊敷万太郎・桑原利彦・山口誠・前田恭志・林田康
 宏・逸見義男:機論(A), 75-752 (2009), 491-500.
- 42) Ishiki, M., Kuwabara, T. & Hayashida, Y.: Int. J. Mater. Forming, 4-2 (2011), 193-204.
- 43) 菅原史法·桑原利彦:塑性と加工, 54-624(2013), 57-63.
- Kuwabara, T. & Sugawara, F.: Int. J. Plasticity(2013), http://dx.doi.org/10.1016/j.ijplas.2012.12.003 (accepted)
- 45) Kuwabara, T., Van Bael, A. & Iizuka, E., Acta Mater., 50-14 (2002), 3717-3729.