Review

Z.Xia

外形形状制御による軸肥大加工法における基礎的研究

朱 霞*

1. 緒 言

一般産業用機械において主要部品のひとつである回転 軸は部分的に直径の大きい段付軸である場合が多い.従 来,このような軸材の製造には、切削や溶着あるいは鍛 造などの加工方法が用いられてきた.しかし,これらの 製造方法にはいくつかの問題点がある.例えば、切削加 工では素材の無駄や廃油処理の問題があり、溶着加工で は接合部での強度劣化の問題がある.また、鍛造加工で は高価で大型の加工装置が必要であり、かつ騒音公害な どの問題がある.

そこで、共同研究者らはメカニカル・ラチェット現象 に着目し,鋼材軸に対して軸圧縮力を負荷すると同時に, 回転曲げによって引張と圧縮の交番応力を繰返し作用さ せることにより, 逐次, 軸の一部を肥大させるという新 しい塑性加工法を開発してきた.この成形加工法は軸肥 大加工法と呼ばれている.この軸肥大加工法は井浦によ って考案され、岡部によってメカニカル・ラチッェト現 象の概念に基づき体系化されて軸肥大加工過程での変形 挙動も定式化されてきた^{1)~6}.この定式化により、本技 術の応用展開が加速化され, 高周波熱錬㈱において実製 品加工への実用化が進んでいる.この軸肥大加工法は, 鋼材軸の一部分を,室温において僅かなエネルギーの注 入により、20~30秒間で、かつ塑性加工熱による温度上 昇もなく拡径できるという特長を有している.本加工法 を軸部品の製造に適用すれば、省資源・省エネルギー・ 省コストといった効果が期待できる.

ところで、軸部品の多くは六角や歯車あるいは多段軸 などのように特徴的な外形の部位を有している.従来、 そのような最終形状を得るために、軸肥大加工後に切削 加工を必要としていた.そこで、軸肥大加工法を更なる コストパフォーマンス加工技術へと発展させるために、 本研究では、肥大加工部位の外形を制御できる新しい軸 肥大加工法を開発した.最終外形に対応する形状を内径 に有する金型の中で、鋼材軸の一部分を塑性変形させる ことによって、様々な外形形状を持つ肥大部を成形する ことを試みた.加工条件による被加工部の成形変形挙動 を実験的に明らかにし、加工を伴い、被加工部の疲労損 傷を調査した.さら、加工過程における軸肥大変形シミ ュレーション解析手法を開発した.

2. 加工実験

2.1 加工機および加工試験片

図1に加工実験に用いた軸肥大加工機を示す.写真中 の奥側のユニットAは曲げと回転の付加機能を有する装 置である.このユニットAの前面には金型が取付けられ る.一方,写真中の手前側のユニットBは軸力の付加と 回転従動の機能を有する装置である.両装置は,それぞ れスリーブ保持治具を有し,同一軸線上に対向している. この軸線上において,ユニットAは固定されており,ユ ニットBは前後方向に動くことができる.金型の六角孔 寸法は図2に示し,対角線長さ27mm,平行面間距離 23.4mmであり,金型の厚さは13.5mmである.加工試験 片にはJISのSS400Dを用いた.**表1**に試験片の寸法と 機械的特性を示す.

2.2 加工実験方法

図3は外形拘束制御による軸肥大加工方法を表した模式図である.本実験手順は以下のとおりである.まず, 試験片をスリーブの孔に挿入し,両スリーブ間の初期つ かみ間隔をL₀に設定する.L₀は目標形状(直径,幅)ま で軸肥大加工する場合の加工前後での材料の体積が等し

図1 加工機

図2 六角孔を有する金型

* 愛媛大学大学院理工学研究科 講師

くなるように決定する.次いで,試験片には軸圧縮力 Pが負荷されると同時に回転が与えられる.さらに角度 θ の曲げが付加される.ここで,曲げ回転中心は最初の軸 線上に位置しており,曲げ回転半径はCである.以上の 操作により両スリーブ間の材料が軸方向に圧縮され,そ れに伴う半径方向への拡径変形が起こる.両スリーブ間 距離Lが目標距離 L_N に到達したら,曲げ角度 $\theta \ge 0^\circ$ に 戻して軸芯出しを行う.最後に軸圧縮力Pを除荷し,回 転を停止させて加工終了となる.本実験では,最終形状 の造形までの加工工程を二つの段階に分けて考える.一 つ目はLが金型の厚さtに到達しユニットBがそれ以上 前進できなくなるまでの荒加工工程であり,二つ目はLが金型の厚さtに到達後も軸圧縮と回転曲げを継続する 仕上げ加工工程である.

2.3 加工実験条件

両スリーブ間の試験片の初期設定長さ L_{θ} は金型の厚 さ 13.5mm も含めて 27mm とした.本実験での加工条件 は、まず、軸肥大変形に及ぼす軸圧縮力の影響を明らか にするために、曲げ角度と回転速度を $\theta=3^{\circ}$ 、 $\omega=60$ rpm と固定し、軸圧縮荷重 P を 160kN、200kN、250kN と変 化させた.次に、軸肥大変形に及ぼす回転速度の影響を 明らかにするために、曲げ角度と軸圧縮荷重を $\theta=3^{\circ}$ 、 P=200kN と固定し、回転速度 ω を 20rpm, 40rpm, 60rpm と変化させた. 曲げ角度 θ の曲げ回転半径 C は 5mm とした.

3. 加工実験結果

3.1 軸肥大変形に及ぼす軸圧縮力の影響

図4に荒加工工程のみの加工を行った場合の試験片写 真を示す.図5は金型への試験片の充填率ηと基準化軸 圧縮応力 σ_c/σ_yとの関係で,軸肥大変形に及ぼす軸圧縮力 の影響を調べた線図である.ここで,充填率ηは金型六 角孔の対角線長さH_{max}に対する軸肥大部の最小直径D_{min} の比であり,次式のように定義した.

図4 荒加工過程における異なる軸力により成形された 試験片の外形写真

図 5 荒加工過程における充填率と基準化軸圧縮応力との関係

図 6 荒加工過程における異なる回転速度により成形さ れた試験片の外形写真

$$\eta = \frac{D_{\min}}{H_{\max}} \tag{1}$$

これらの結果から、軸圧縮荷重が大きくなるにつれて 充填率が向上していくことがわかる.しかし、 250kN(σ_c =1.6 σ_y)の場合でも荒加工工程だけでは満足な充 填率を得ることができなかった.

3.2 軸肥大変形に及ぼす回転速度の影響

図6に荒加工工程のみの加工を行った場合の試験片写

真を示す. 図7は金型への試験片の充填率ηと回転速度 ωとの関係である.これらの結果から,荒加工工程にお いて回転速度は軸肥大変形に対してそれほど影響を与え ないということがわかる.

図7 荒加工過程における充填率と回転速度との関係

3.3 軸肥大変形に及ぼす仕上げ加工工程の効果

図8に回転速度の影響を調査する実験において,荒加 工工程に引き続き仕上げ加工工程を行ったときの試験片 写真を示す.図9は金型への試験片の充填率ηと回転速 度との関係であり,図7に仕上げ加工工程を行った場合 の結果を追加したものである.これらの結果から,充填 率の向上に対する仕上げ加工工程の効果は回転速度の増 大に伴って明瞭に出現することがわかる.

図8 仕上げ加工過程における異なる軸回転速度による 試験片の外形写真

図9 仕上げ加工過程における充填率と軸回転速度との関係

4. 加工実験結果についての考察

4.1 降伏遅れ現象による仕上げ加工工程の効果

図6と図8から,加工後の試験片の外形形状は荒加工 工程後に仕上げ加工工程が行われるか否かにより明瞭に 変化することが認められ,仕上げ加工工程の追加が明ら かに効果的であることを示唆している.仕上げ加工工程 の効果は回転速度が速いほど増大し,しかも,回転回数 の増大とともに外形形状は理想的な六角形に近づくこと がわかる.このような充填率の増大は降伏遅れ現象に依 存していて,その出現量は回転速度が速ければ速いほど 大きくなる.

また,加工中に注入される降伏遅れの弾性ひずみエネ ルギーも大きくなるので,降伏遅れに起因する塑性変形 量もそのエネルギーの増大とともに増大すると想定でき る.

4.2 変形挙動の推定

従来の軸肥大変形挙動は岡部らの一連の研究により次 式のように明らかにされた^{1),5),6)}. 式中の文字の意味は文 献^{1),5)}等を参照されたい.

図 10 加工過程における被加工の変形挙動

$$\frac{L_N}{L_0} = \exp\left[\mathcal{E}_0\left\{1 - \exp\left(-\frac{N}{N_0}\right)\right\}\right]$$
(2)

$$\frac{D_N}{D_0} = \sqrt{\exp\left[\varepsilon_0 \left\{\exp\left(-\frac{N}{N_0}\right) - 1\right\}\right]}$$
(3)

$$N_0 = N_0^* \theta^{\alpha_1} (\sigma_c / \sigma_v)^{\alpha_2} \tag{4}$$

図 10 に本実験で得られた試験片の変形挙動を示す. 外形拘束制御軸肥大加工における変形挙動は,試験片の 軸肥大部における外形表面が金型孔の内面に接触する前 後を第1段階と第2段階に分けて考えることができる. 第1段階での軸肥大変形挙動は従来と同様に式(2)~(4) により推定できることがわかる.第2段階での軸肥大変 形挙動に関しては,回転回数 N が N_pより増大するとと もに,実測量は式(2)~(4)により推定される軸肥大変形挙 動曲線から離れていく傾向にある.ここで,N_pは試験片 の外形表面が金型孔の内面に接触するときの回転回数で あり,図10中の一点鎖線と軸肥大変形曲線との交点から 計算できる.回転回数 N が N_pを超えると金型の内面壁 からの反力のために,軸力 P の軸肥大変形への寄与が減 少し変形は進みにくくなる.それゆえ,軸力 P が小さい ほど N_p以降の変形はより一層進みにくくなる.つまり, +分な充填率に達するまでの回転回数Nは軸力Pに依存 することが予想される.そこで,第2段階での変形挙動 を推定可能とするため外形拘束制御軸肥大加工における 変形挙動の数式モデル化を以下に図ることにする.軸肥 大変形挙動の数式モデル式(2),(3)におけるパラメータ N₀, ε₀は外形拘束制御軸肥大加工の場合では回転回数 N が N₀を超えるか否かによって明らかに異なる.

それゆえ、 N_p 以前の第1段階における $N_0 \in N_{01}$ 、 N_p 以後の第2段階における $N_0 \in N_{02}$ とすると、軸肥大変形挙動は次式のように表すことができる.

(i) for $N \le N_p$

$$\frac{L_N}{L_0} = \exp\left[\varepsilon_{01}\left\{1 - \exp\left(-\frac{N}{N_{01}}\right)\right\}\right]$$
(5)

(ii) for $N > N_n$

$$\frac{L_N}{L_0} = -\exp(\varepsilon_{02}) \left\{ 1 - \exp\left(-\frac{N - N_p}{N_{02}}\right) \right\} + \frac{L_{N_p}}{L_0}$$
(6)
$$\frac{D_N}{D_0} = \left(\frac{L_N}{L_0}\right)^{-\frac{1}{2}}$$
(7)

図11に本実験から得られた N₀₁, N₀₂ および N_pと軸力 P との関係を示す.これらの関係は次式のように表すこ とができるので,任意の軸力 P から推定することができ る.

図 11 係数 N_p, N₀₁, N₀₂と軸力 Pとの関係

$$N_{01} = k_1 P^{n_1} \tag{8}$$

$$N_{02} = k_2 P^{n_2} \tag{9}$$

$$N_n = k_n P^{n_p} \tag{10}$$

次に、 ϵ_{01} および ϵ_{02} について述べる. ϵ_{01} は冷間加工における最大肥大率 D_N/D_0 を2倍とした場合の軸圧縮真ひずみであり、次式のように表すことができる.

$$\varepsilon_{01} = \ln\left(\frac{L_N}{L_0}\right) = \ln\left(\frac{D_0}{D_N}\right)^2 = -1.386 \qquad (11)$$

一方, ε₀₂は試験片が金型の六角孔に完全に充填率され たときの等価肥大直径 D_{eqmax} (η=1)から推定でき,次式の ように表される.

$$\varepsilon_{02} = \ln\left\{ \left(\frac{D_{N_p}}{D_0} \right)^{-2} - \left(\frac{D_{eq \max}}{D_0} \right)^{-2} \right\} = -2.805 \quad (12)$$

ここで、 D_{eqmax} は対角長さ H_{max} の六角形と等しい面積 を持つ円の直径として次式のように計算できる.

図 12 式(5)~(7)から推測された被加工部の変形挙動

$$D_{eq\max} = \sqrt{\frac{3}{\pi} H_{\max}^2 \sin\left(\frac{\pi}{3}\right)}$$
(13)

図 12 は式(5)~(7)にて推定した軸圧縮力と軸肥大変形 挙動の関係である.式(5)~(7) は適当な軸圧縮力条件下 で十分な充填率になるまでの回転回数Nを推定するのに 便利である.

4.3 軸肥大変形に伴う充填率挙動の推定

軸肥大変形に伴い充填率がどのように変化していくか を推定するために、軸肥大率と充填率との関連付けを試 みる.軸肥大変形部は圧縮変形の進行に伴って軸材の直 径が拡大していくが、その時の形状は樽形を呈す.まず、 変形挙動の第1段階においてはN回転目の軸直径 D_N を 樽形部の最大直径 D_{max} と仮定する.金型六角孔への試験 片の充填率 η は式(1)のように定義している.今、 D_{min} と D_{max} の関係を式(14)のようにおくと軸肥大率の挙動に対 応した充填率の挙動が得られる.

$$D_{\min} = \left(\frac{D_0 + D_{\max}}{2}\right)^{1 + \frac{N}{N_p}}$$
(14)

次に,試験片の外形表面が金型孔の内面に接触した後 の第2段階では,六角形の角部に材料が充填されていき, その時の軸方向に直角な面の断面形状は不完全六角形状 を呈す. 今,図 13 の模式図に示すように六角角部に注 目して,以下の式に表されるような関係で軸肥大変形が 進行すると仮定する.

$$D_{\max} = \frac{D_{\min} + H_{\max}}{2} = \frac{1 + \eta}{2} H_{\max}$$
(15)

$$D_{mean} = \frac{D_{\min} + D_{\max}}{2} = \frac{1 + 3\eta}{4} H_{\max}$$
(16)

ここで、 D_{\min} は軸肥大変形が最も遅れる傾向にある金 型奥側での試験片の直径である. D_{\max} は軸肥大変形が先 行する金型入り口側での試験片の直径である.また、 D_{mean} は D_{\min} と D_{\max} の平均であり、不完全六角形状の対 角長さでもある.対角長さ D_{mean} の不完全六角形の面積 は次式で表される.

図 13 仕上げ加工過程における被加工部の変形挙動

$$S = \frac{\pi}{4} \left\{ \zeta \left(D_{maen}^{2} - H_{min}^{2} \right) + H_{min}^{2} \right\}$$
(17)

ここで、くは空隙率であり、六角孔全体に対する六角 孔とその内接円との間の空間の比として次式のように定 義している.

$$\zeta = \frac{\frac{3}{\pi} H_{\text{max}}^{2} \sin\left(\frac{\pi}{3}\right) - H_{\text{min}}^{2}}{H_{\text{max}}^{2} - H_{\text{min}}^{2}}$$
(18)

ここで、断面積Sと等しい面積を持つ円の直径 D_{eq} を考えたとき、 D_{mean} は D_{eq} を用いて次式のように表される.

$$D_{mean} = \sqrt{\frac{D_{eq}^{2} - H_{\min}^{2}}{\zeta} + H_{\min}^{2}}$$
(19)

変形挙動の第2段階における D_Nをこの等価円直径 D_{eq} と考えることにすると式(7)から求まる軸肥大率の挙動 に対応した D_{mean} の挙動が得られる. その結果,式(16) より充填率の挙動が得られる. 図 14 に加工回転回数 N の増加に伴う充填率 η の挙動を示す.

図 14 回転数の増加に伴う充填率の変化挙動

5. 有限要素法を用いたシミュレーション解析

5.1 解析モデル及び解析条件

解析では汎用有限要素法(FEM)解析ソフトである MSC.Marc2007を使用した.解析モデルを図15に示す. 図に示すように両側ダイス・金型を剛体壁,被加工剤は 変形体と定義した.変形体を構成する要素は,曲げ変形 により生じるロッキングを防ぎ精度のよい解析結果を得 るために,6節点低減積分要素を用いた.その要素数総 数は11136個,接点総数は12994個である.

境界条件は図15に示すように、曲げ側では軸方向への 固定、周方向への回転、および曲げ中心に対する曲げ角 度を負荷する.加圧側では軸方向への荷重を加える.こ れにより軸肥大加工法の軸加圧力および回転曲げの負荷 を再現する.加工実験と同様な負荷条件で解析を行った.

なお,試験片は変形体とし,ダイスと金型は剛体とした.フォン・ミーゼスの降伏条件,等方硬化則およびプラントル・ロイス流れ則を採用した.

Axial-compressive force Rotational speed

Bending loading θ

図 15 FEM 解析モデルおよび境界条件

5.2 解析に用いた構成式

軸肥大加工は塑性変形を伴うため、応力とひずみの関係は非線形となる. さらにメカニカル・ラチェット現象の影響を考慮する必要があるため、構成式はさらに複雑なものになると推察できる.本解析に用いる構成式を以下のように定める.

$$\sigma = E\varepsilon_e + K\varepsilon_p^n \tag{20}$$

ここで、 σ は相当応力、Eはヤング率、 ϵ_e は相当弾性 ひずみ、 ϵ_p は相当塑性ひずみ、K、nは曲げ角度 θ およ び軸圧縮力応力比 σ/σ_0 の関数とすることでメカニカ ル・ラチェットによる影響を考慮する.このK、nは、 解析結果と同じ加工条件(曲げ角度 θ ,軸圧縮応力比 σ/σ_0)で加工した実験結果と比較することで、各加工条件 における値を求める.そして、それらの結果を比較する ことにより材料定数を同定する.

5.3 解析結果

軸断面におけるフォンミーゼス相当応力分布および相 当塑性ひずみ分布の例を図 16 と図 17 に示す.また,各 加工条件において,被加工部の形状変化については実験 結果と解析結果との比較を行った.その結果を図 18 に 示し,両者がよく一致している.

図 16 中央断面におけるフォンミーゼス相当応力分布

図 17 中央断面における相当塑性ひずみ分布

5. 結 論

金型を用いて被加工材の外形形状を拘束制御する新し い軸肥大加工法が開発された.本文では肥大部を六角形 状に造形する場合について加工実験及び FEM 解析を実 施し,得られた結果は下記のように要約する.

- 本加工法においては、充填率 η は軸圧縮力 P および 回転速度 ω に依存し、それらの増大とともに向上す る.
- 2)加工過程では、荒造形加工工程と仕上げ造形加工工 程が必要であり、重要なポイントとなる.よって、 被加工部の変形挙動に対して2段階の工程を1つの 式で表せる数式モデル化を図り、十分な充填率を得 るまでに必要な回転回数を推定可能にした.
- 3) FEM 解析により, 被加工の変形挙動が推測できる.

謝辞

本研究をご支援頂きました,公益財団法人天田財団に 深く感謝の意を表します.また,本研究の遂行にご協力 頂いた愛媛大学工学部機械工学科材料力学研究室の皆さ んにお礼いたします.

参考文献

- (1) 井浦忠・岡部永年・朱霞: 塑性と加工, 44-514 (2003), 1115-1119.
- (2) 井浦忠・岡部永年・朱霞:同上, 45-516 (2004), 35-39
- (3) 井浦忠·岡部永年·朱霞:同上, 45-520 (2004), 321-325
- (4) 井浦忠・岡部永年・朱霞:同上,46-531 (2005),327-331
- (5) 岡部永年・朱霞・森一樹・井浦忠:同上, 46-533 (2005), 520-524.
- (6) 岡部永年・朱霞・森一樹・井浦忠:同上, 47-540 (2006), 49-53.