

超塑性固相接合による 金属フォームサンドイッチパネルの作製

佐藤 英一*

E. Sato

1. 研究の目的と背景

材料内部に多数の気泡を有する金属フォームは,断熱, 防音,衝撃吸収,制振特性等に優れた軽量構造材料であ る.特に3次元構造を有する金属フォームは,従来から 使用されてきた2次元のハニカム構造に比べて,材料設 計の自由度が増加するため,多くの工業的応用が期待さ れている¹⁾.金属フォームは,容易に切削や曲げ加工が できるが,本質的に溶接には適さない.したがってサン ドイッチ構造部材を作製する場合,化学接着剤やろう付 けによりパネルとコアを接合するしかなかった.しかし ながらこの方法では,ポリマーフォームに対する金属フ ォーム特有の耐熱性を最大限に発揮することができない という問題が生じる.

拡散接合を用いれば,接着剤の耐熱性の問題を乗り越 えられるけれども,金属フォームは小さな荷重で容易に 降伏,座屈が生じるため,通常の拡散接合が不可能であ った.そこで本研究では,最近我々は,超塑性 5083 アル ミニウム合金圧延材をインサート材料として用いること により,発泡アルミニウム ALPORAS^{2,3)}を超塑性拡散接 合することを試みた⁴⁾. ALPORAS フォームは,溶融ア ルミニウム中に発泡剤として水素化チタン(TiH₂)粉末を 導入して発泡させた典型的なクローズドセル型フォーム である.この結果を踏まえ、次に本研究では,工業的に 重要なサンドイッチ構造部材の作製にこの手法を応用し, 発泡アルミニウム ALPORAS,超塑性 5083 アルミニウム 合金圧延材をスキン材とするサンドイッチパネルの作成 を試みた⁵⁾.

2. 実験方法

2.1 供試材

クロズドセル型アルミニウムフォーム ALPORAS は神 鋼鋼線製で,純アルミニウムに TiH₂を発泡材として用い た溶湯法で作成されたものであり,Ca が溶湯の粘度上昇 のため添加されている.フォームの化学組成は, 1.04wt%Ti, 1.61wt%Ca であり,セルサイズと相対密度ρ は, 3~6 mm, 0.11 のものと 2~4 mm, 0.16 のものを使用 した.

超塑性 5083 アルミニウム合金圧延材はスカイアルミ ニウム製で, 化学組成は 4.7wt%Mg, 0.65wt%Mn, 0.13wt%Cr, 0.04wt%Fe, 0.04wt%Si, 0.03wt%Ti である. 熱

* 宇宙航空研究開発機構 宇宙科学研究所 教授

間,冷間圧延と再結晶処理により作成され,結晶粒径 12μm の等軸粒組織となっている.本合金の超塑性特性 は Iwasaki et al.により報告されている⁶.

2.2 拡散接合試験

放電加工機を用いて 10x10x20mm に加工したp=0.11 の ALPORAS フォームと 10x10x1mm の 5083A1 合金板を図1 に示すように配置した.供試材の表面は試験直前に Keller 氏液(HF:2ml, HCl:3ml, HNO₃:5ml, H₂O:190ml)で仕 上げた.1 ターンの高周波加熱コイルによりインサート 板を優先的に加熱するようにした.接合界面の酸化を減 らすため,接合温度までほぼ 5min で急速に加熱した. 真空中で 823K まで加熱し, 0.2MPa の圧縮荷重を付加し た.

図1 拡散接合試験およびサンドイッチパネル作成の 模式図

2.3 サンドイッチパネル作成

φ50 x10 mmに加工したρ=0.16の ALPORAS フォームと φ50 x1 mm の 5083Al合金板 2 枚を図1のように配置し, 一軸応力を付加した.スキン材を優先的に加熱させるた めに中心部の間隔が広い特殊な高周波加熱コイルを使用 し,ジグは鋼製としたが,ALPORAS フォームの中心か ら上下の鉄板までの温度はほぼ等しかった.拡散接合試 験と同様に,接合界面を化学研磨した後,張り合わせ, 真空中で 823K まで加熱し,圧縮荷重を付加した.ただ し荷重は 0.35MPa とし,約1 mmの圧縮変位が得られた 時点で接合試験を終了した.

2.4 作成試料の評価

拡散接合試料の接合強度は、スパン間隔 30mm の 4 点

曲げ試験により評価した.インサート材がロッドの中心 で垂直になるように配置し,0.5mm/min で曲げられた. 試験は室温(298K)と高温(423K)で行った.比較のため, 同様の曲げ試験を,ALPORAS 単体および接着剤で接合 した ALPORAS に対しても行った.

サンドイッチパネルの接合強度は、パネル面に垂直方 向の引張り試験により評価した. 接合後のサンドイッチ パネルから 10 mm 角の試験片を放電加工により切り出 し、パネル面と治具とを化学接着剤を用いて完全に固定 し、0.5 mm/minのクロスヘッドスピードで室温試験を行 った.

3. 接合条件の検討

拡散接合は、当然、ALPORAS のセル壁金属がクリー プする高温で行われる.アルミニウムフォームのクリー プ挙動は報告されているが⁷⁾、ALPORAS についての報 告はない.そこで本研究では、使用する 2 つの ALPORAS の高温での単軸圧縮変形挙動を、大気中、773 および 823K にて、0.1mm/min の速度で測定した.

図 2 に得られた公称応力-公称ひずみ曲線を示す. その様子は, クローズドセル型金属フォームに一般にみられる室温圧縮変形挙動⁸⁾と同じものであった. 変形初期に変形応力が増加した後, 広いひずみ範囲で変形応力がほとんど変化しないプラトー領域がみられ, その後セル 壁同士が接触するようになり変形応力が急速に増加する. プラトー応力は, ρ=0.11 の ALPORAS では 773K では 0.35MPa, 823K では 0.22MPa であり, ρ=0.16 の ALPORAS では 823K では 0.38MPa であった.

外部応力 σ^{ext} が ALPORAS に負荷されたとき,5083 板の表面にかかる局所応力は σ^{ext} より ρ 倍大きなものになる. ρ =0.11 と 0.16 の ALPORAS に 823K でのプラトー応力よりも小さな 0.2 と 0.35MPa を負荷すると,局所応力は 1.8 と 2.2MPa となることになる.

図2 ALPORAS の高温一軸圧縮変形挙動

本研究で使用した 5083 板の高温一軸引張変形挙動は すでに報告されており⁶⁾, 823K で 1.8~2.2MPa はひずみ 速度感受性指数が高い領域(0.4<m<0.7)に相当する.した がって,上述の外力が 0.2 と 0.35MPa は 5083 板の最適超 塑性条件に相当することとなり,拡散接合条件として, p=0.11 と 0.16 の ALPORAS に対し 823K で 0.2 と 0.35MPa と設定することができる. ただし, 拡散接合中の 5083 板の変形モードはインデンテーションクリープモードで あり, 通常の引張クリープモードとは挙動が少し異なる ものと思われ, 今後インデンテーションクリープデータ の蓄積が必要である.

4. 結果および考察

4.1 拡散接合試料の観察

拡散接合後の試験片断面写真を図3に示す.実体顕 微鏡による(a)では,5083板が塑性変形して曲がっている が,ALPORASのセル構造は壊れていないことが分かる. (b)は金属顕微鏡縦による観察であり,矢印が2種金属の 界面を示す.ALPORASフォームのセル壁が5083A1合金 に食い込み,そこで5083A1合金が優先的に超塑性変形し ていることがわかる.また接合界面の一部において界面 の消失も観察できた.

図3 拡散接合試料のマクロ(a)およびミクロ(b)組織

接合時に拡散が生じていることを確かめるため,接合 界面近傍の Mg の濃度プロファイルを SEM/EDS システ ムで測定した.もとの ALPORAS は Mg を含んでおらず, 5083 は Mg を 4.7%含んでいる.断面を化学研磨した後, EDS のスタンダードレス測定を行った.図4に示すよう に, 5083 領域では 5.8%と評価された Mg 濃度が ALPORAS 領域になるにつれ 1%程度まで 300μm の範囲 で徐々に減少している.このことは Mg が 5083 から

4.2 拡散接合試料の接合強度

もとの ALPORAS は、曲げ試験において、最大荷重を 示した後、セル構造の圧壊による急激な加重の低下を示 したが、破断はしなかった.これに対し、拡散接合試料 では、最大荷重にて拡散界面にて破壊した.このときの 曲げ強度はもとの ALPORAS の半分ほどであった.

4 点曲げ試験結果

図5には様々の曲げ試験の結果をまとめる. 室温では (a),もとのALPORASとエポキシ接着剤接合材の曲げ強 度はほぼ同等であった.ポリエステル接着剤接合材と拡 散接合材の曲げ強度はその50~60%程度であった. 拡散 接合温度の影響は,本実験では見られなかった.

423K という高温では(b), もとの ALPORAS と接着 剤接合材の曲げ強度は大幅に低下した.特にエポキシ接 着剤接合材は接合状態を保つことができなかった.これ に対し拡散接合材は室温とほぼ等しい曲げ強度を示した. 423K での接合効率は 60%を超えた.

4.3 サンドイッチパネルの観察

拡散接合後の試験片写真を図6に示す.半分に切断 された試験片の外観(a)を見ると,きれいなサンドイッチ パネルが作製できたことがわかる.また縦断面(b)を拡大 すると,ALPORASフォームのセル壁が5083AI合金に食 い込み,そこで5083AI合金が優先的に超塑性変形してい ることがわかる.また接合界面の一部において界面の消 失も観察できた.

接合後のサンドイッチ構造において,発泡材料の特性 を最大限に発揮するためには、セル構造の維持が重要で ある.本実験後の ALPORAS フォームは、セル壁の薄い 部分でわずかに座屈が見られたものの、大部分の領域で 元のセル形状を保っていた.

図6 作製したサンドイッチパネルの (a)外観と(b)断面

4.4 サンドイッチパネルの接合強度

接合後の引張り試験における応力-ひずみ曲線の一例 を図7にに示す. 接合した試験片は降伏する前に接合界 面で脆性的に破断し,破断応力は1.0 MPaであった. 一 方,同じ断面積を有する ALPORAS フォームの引張り強 度は3.1 MPa であることから,本実験における接合強度 は32%と評価できた.

の引張試験結果

5. まとめ

金属フォーム同士の超塑性拡散接合の手法を応用し, 金属フォームをコア材としたサンドイッチ構造部材を作 製することができた.典型的な超塑性合金と金属フォー ムとして,5083AI合金圧延材と ALPORAS フォームを選 択し,5083AI合金を優先的に加熱できるような高周波加 熱方式を用いた.接合後の試験片はほぼ元のセル形状を 保っており、良好なサンドイッチ構造が得られた.

接合断面を観察した結果, ALPORAS フォームのセル 壁が 5083A1 合金に食い込んでおり, 界面の消失および 5083A1 合金側から ALPORAS フォーム側への Mg 原子の 拡散を確認できた.また接合強度を曲げ試験により評価 した結果,大気中で接合試験を行ったにもかかわらず, 元の ALPORAS フォームの 60%の曲げ強度が得られた. 接合強度を一軸引張り試験により評価した結果,元の ALPORAS フォームの 32%の破断応力が得られた.基本 的にアルミニウム系は,拡散接合困難であることからも, 本研究で得られた手法は,その他の金属フォームにも容 易に適用できると考えられる.

謝辞

本研究は天田金属加工機械技術振興財団の平成 14 年 度研究助成金によるものであり、ここに特記して謝意を 表す.

参考文献

- 1) J. Banhart: Prog. in Mater. Sci. 46 (2001), 559.
- S. Akiyama et al., United States Patent No. 4713277 (1987).
- T. Miyoshi, M. Ito, S. Akiyama, A. Kitahara, Adv. Eng. Mater. 2 (2000) 179.
- K. Kitazono, A. Kitajima, E. Sato, J. Matsushita and K. Kuribayashi: Mater. Sci. Eng. A327 (2002), 128.
- 5) E. Sato, K. Kitazono, K. Kuribayashi, A. Kitajima and J. Matsushita: Mater. Sci. Forum **447-448** (2004), 521.
- H. Iwasaki, H. Hosokawa, T. Mori, T. Tagata and K. Higashi: Mater. Sci. Eng. A252 (1998), 199.
- E. W. Andrews, L. J. Gibson, M. F. Ashby, Acta mater. 47 (1999) 2853.
- 8) F. Han, Z. Zhu, J. Gao, Metall. Trans. 29A (1998) 2497.