多軸プレスによるマグネシウム合金の成型加工

初鹿野 寬一*

1. はじめに

マグネシウム合金は構造用金属のなかで一番軽い金属 であり,比強度,形状性,電磁気遮蔽性,リサイクル性 などの特性が良い.ふつう,マグネシウム金属の製品は ほとんどダイカストで製作されている. 鍛造したマグネ シウム合金はダイカストしたマグネシウム合金と比べて 機械的特性及び溶接性などが優れ、大きな構造用材料等 に大いに適すると思われる. 鍛造塑性変形を利用してマ グネシウム合金をニアネットシェイプ成形すれば材料歩 留まりは高く,製造業における環境負荷の低減に寄与し, ひいては製品と関連するエコマテリアルとしての価値を 高めると期待できる.マグネシウムの高強度化ならび表 面性状の改善および加工精度を向上させるために低温で のネットシェイプ成形技術を確立する必要があり、それ に伴いマグネシウム合金の応用範囲の拡大が期待できる. しかし, 塑性加工において鍛造を利用したマグネシウム の加工に関する研究は少ない.

本研究では、マグネシウム部材のネットシェイプ成形 を行なうことを目的とし、多軸プレスを用いて展伸用マ グネシウム合金の加工を行い、十字形の部品を成形して、 健全な成形を行なうための加工温度、速度および背圧の 影響を調べた.

2. 実験方法

2.1 据込み試験

実験に使用したマグネシウム合金は市販品のマグネシ ウム合金 AZ61で、その化学成分を表1に示す.この AZ61 は温度 355℃で、直径 28mm と 16mm に押出し加工され た丸棒である. 直径 28mm の棒は旋盤で直径 16mm,高 さ24mmに、直径 16mmの棒は高さだけを 16mmに加工 して試験片とした. 据込み試験は無拘束、無潤滑で行っ た. 室温において、正確な変位を計測するため、レザー 変位計と 1/1000 mm まで計測できるデジタル変位計を併 用した. また、温度を室温から 300℃まで変えて、歪 が 0.5 になるまで据込み、変形性を調べた.

表 マクネンワム合金 (AZ61)の化字

Item	Mg	Al	Zn	Si	Cu
AZ61	Bal.	6.0	0.8	0.1	0.05

2.2 多軸材料試験機

マグネシウム合金 A Z61 の鍛造性を調べるため,多軸 材料試験機¹⁾を用いて側方押出しを行った.多軸材料試 験機は,能力が 500 k N で,変位が±125 m m である 4 基 の水平動ラムと,能力が 2500 k N で,変位が 150 m m で ある上下動ラム 1 基からなる.

2.3 金型

図1に枝付き部品の金型を示す. 左の金型は枝が2本 で、その直径はビレットの直径と同じ16mmである. 右 の金型は枝が4本で、直径は8mm である. いずれも断 面積の合計はビレットの断面積の合計と同じである. 金 型の材質は高速度鋼(SKH51)で、硬さは62HRCである. 金型は多軸材料試験機の作業面中心に上下動ラムによっ てクランプされる. ビレットの加熱は上下金型の端面に 直接取り付けてある100V,300Wの合計8個の板状のヒ ータにより金型を介して行われる. 温度計測はアルメル ークロメル熱電対温度計で行った. 計測位置は上下金型 の合わせ面上で金型中心から約20mmの位置である.

図1 枝付き部品用金型

2.4 多軸材料試験機による側方押出し加工

温間側方押出し加工に用いたビレットは直径 16mm で, 長さ 50mm で,外径を加工したものと加工しないものの 2 種類を使用した.潤滑剤は二硫化モリブデンを用いた.

ビレットを金型の溝にセットしてから加工温度まで加熱し,2本のパンチを使用して側方押出し加工を行った. 押出し速度は50mm/minである.

さらに、低い温度での加工を実現するため二つの加工 法を試みた.一つは静水圧を高めるため、枝の直径を半 分の 8mm した側方押出し加工、もう一つは背圧を枝の 端面に加えながら側方押出しする方法である.この場合 のビレットは直径を加工したものを使用した.

^{*} 産業技術総合研究所 テクニカルスタッフ

3. 結果及び考察

3.1 据込み試験

図2に外径を加工したビレットと加工しないビレット の室温から高温での据込み試験結果を示す. 図2の(a) では、室温から160℃まではせん断による割れが発生し たが、170℃以上の温度では歪が0.5 でも割れずに変形し た.(b)では、室温から200℃までビレットはせん断によ る割れが生じて破壊した.210℃以上の温度になるとビレ ットは歪みが0.5 以上でも割れずに変形した.(a),(b) いずれも破壊しないビレットは上端が脹らんだマッシュ ルームのような形状の変形となった.この形状は温度が 上昇して300℃になっても変わらず、本試験において、 ビレットは樽形には成らなかった.

Billet Room 160 ℃ 170 ℃ 250 ℃ 300 ℃ (a)外径を加工したビレット

Billet Room 200 ℃ 210 ℃ 250 ℃ 300 ℃
(b) 外径を加工しないビレット
図 2 据込み試験結果

図3に温度を室温から 300℃まで変化させた外径を加 工した AZ61の応力一歪の関係を示す. 歪速度は室温で

は 0.4mm/min でそれ以外では 0.5mm/min である. 図にお いて、室温の応力は始め急激に上昇し、169MPa 付近で 降伏してから再び上昇し、最大値の 483MPa となった. 最大値到達後、割れが入り、応力は急激に減少して零と なった. 温度 160℃でも割れが入ってビレットは破断し たが破断時の歪みは 0.25 と室温の 0.1 に比べて大きい. 温度 170℃において, 歪みが 0.5 以上になってもせん断 による破断は起こらずに変形した.応力は最大値到達後, 低下しビレットは軟化の傾向を示した. さらに歪みが大 きくなると応力は再び上昇した.これは端面が張り出し て大きくなり,これに伴って圧縮荷重が大きくなるが, 応力計算は元の面積で割って計算しているためである. 図示はしないが、外径を加工しないビレットの応力一歪 図でも図3と同様な傾向を示し、室温から200℃までビ レットはせん断により破壊し,210℃以上になるとビレッ トは歪が 0.5 以上になっても破壊せず変形した.また, ピーク後, 軟化の傾向も見られた.

3.2 温度の違いによる温間側方押出し加工

図4に温度を変化させた場合の側方押出し加工の結 果を示す.この図において、(a) は外径を加工したビレ ットで、180℃の押出し品は枝の両方に大きな3個の割れ が見られる.200℃の押出し品は枝の両方に1個の大きな 割れが見られる.しかし、213℃では大きな割れは観察さ れず、割れのない枝部品を押出し加工することが出来た. 従って200℃と213℃間に、割れを抑制するメタルフロー が考えられる.(b)は外径を加工しないビレットで、230℃ でも割れが生じているが270℃になると割れのない枝付 き部品ができた.マグネシウムの鍛造は225℃以上でな ければ実現は困難であるという報告2)があるが、本研 究では、外形を加工したビレットを用い、213℃で枝付き 部品を押出すことが出来た.

180℃, 200 ℃ 213℃ (a)外径を加工したビレット

180℃ 230℃ 270℃
(b) 外径を加工しないビレット
図 4 側方押出し加工結果

図5に各温度における側方押出し加工時の応力-変位図 を示す.図の(a)において,180℃の押出し応力は150MPa

まで急激に上昇し、息継ぎをしてから再び上昇して最大応 カの430MPaに達する.到達直後、材料内に割れが発生し て応力は急激に0付近まで降下する.その後、再び上昇す るが第二、第三の割れが発生するため応力曲線は振動する. 200℃では、応力は明瞭な降伏点を示さず最大応力まで急激 に上昇した後、割れのため、一旦減少するが、その後割れ の進行がないので緩やかに上昇する.213℃では応力-変位 曲線は最大応力まで 200℃のものとほぼ同じ傾向を示すが、 割れの発生がないので、最大応力直後の急激な応力の減少 はなく、押出し終了まで約 288MPa の同じ応力となる.こ れは側方押出しの特徴である側方向の材料流れが起こると その後は大きな塑性の材料流れがないことによる.(b) に おいても温度は異なるが同じ傾向を示し、270℃では、最大 応力 274MPa に達した後、230MPa まで荷重の低下があるが 加工終了まで一定である.

図6に光学顕微鏡による組織写真を示す.(a)において, 結晶粒の大きさは10µmから20µmであるが,(b)では (a)に比べて結晶粒は大きく20µm程度であり,双晶も 多く観察される.粒界すべりは大きい粒子より小さい粒子 で起こり易いため,外径を加工したビレットは外径を加工 しないビレットよりも変形が容易と考えられる.

図7にX線解析結果を示す.解析はビレットの切断面 で行った.いずれも100および110に大きなピークが見 られる.これはC面が押出し方向に平行に配向している ことを意味する.また,配向度は外径を加工したビレッ トの方が外径を加工しないビレットよりやや大きい.

3.3 ビレットの初期長さの違いによる側方押出し加工 外径を加工したビレットの初期長さを 50mm と 60mm にし、加工温度を 213℃にして温間側方押出し加工を行 った.図8にビレットの初期長さの違いによる結果、図 9に応力—変位の関係を示す.図8で示すようにいずれ も割れのない製品である.図9において、点線の 213℃ はビレットの長さが 10mm 長い 60mm のもので、50mm の 213℃とほぼ同じ傾向を示しているが値がわずか高く なっている.これはビレットの長いぶん摩擦力が大きく なるためである.

図9 長さの違いによるビレットの応力-変位図

3.4 背圧付加による温間側方押出し加工

図 10 に背圧を利用した枝部品を示す.背圧を 150MPa の一定にし,温度を 170℃,180℃,190℃に変化させて 押出しを行ったものと,さらに低い温度での加工を試み るため,背圧を 250MPa,加工温度を 180℃したものの結 果である. (a) 170℃では枝に多くの割れによる深い傷が

(a) 170 °C/ 150Mpa

(c) 190 ℃/150MPa
 (d) 180 ℃/250MPa
 図 10 温度変化による背圧付加の2枝部品

(b) 180 °C/150MPa

見られるが,(b) 180℃になると深い割れの数は少なくなり,その深さも浅くなる.(c) 190℃では,傷は見られなく,割れのない製品を得ることが出来た.背圧を250MPa,温度を180℃した(d)では枝に割れは観察されず,割れのない部品が加工された.

図11に温度変化による背圧付加の応力-変位を示す. 図で上の4線は押出し応力で,下の4線は背圧の応力であ る.背圧 150MPa の 170℃では,応力はピークに達した後, 割れが発生して降下するが背圧が加わっているため,図6 (a) の 180℃のように0 近傍まで降下することはなく, 550MP 付近で止まり,再び上昇する.しかし,第二,第 三の割れが発生するため、応力は減少と上昇を繰り返す. その振幅は変位の増加とともに減衰している.150MPaの 180℃では、ピーク直後、割れのため降下するが降下量は 170℃の約半分である. 190℃ではピーク後, 割れが観察さ れないがわずか低下している.また,加工終了時まで振動 も観察されるがその振幅は他のものと比較して小さい.こ の振動は背圧の応力が押出し応力のピーク直後の変化に 対応して変動する.この背圧の応力振動が押出し応力の振 動に影響しているものと考えられる.背圧を 100MPa 増加 すると押出し応力もほぼ 100MPa 上昇している.また,押

出し応力の振動振幅も 150MPa のもののほぼ半分に減少

3.5 枝部品の温間側方押出し加工

図 12 に、加工温度を 175℃の一定にし、押込み速度を 5mm/min,10mm/min、50mm/min に変えて側方押出し加工 ^{3),4)}を行った結果を示す.押し込み速度 10mm/min と 50mm/min は枝の先端に割れやくぼみが見られるが、 5mm/min では、割れのない4枝の製品が得られた.

50mm/min 10mm/min 5mm/min 図 12 押込み速度変化による4枝部品

図13にこの応力一変位図を示す.

図において、5mm/min のものは降伏後、応力の減少は 見られないが、10mm/min 及び 50mm/min は割れのため急 激な応力の低下が見られる.

3.6 ビッカース硬さ

図 14 に枝付部品の硬さ分布を示す (a)は 200℃の2枝 部品,(b)213℃の2枝部品,(c)198℃の背圧付加の2枝部 品,そして(d)は175℃の4枝部品⁵⁾である.この図おい て,(a)の全体の硬さ分布は(b)のものより低い温度での加 工であるが低い値となっている.これは(a)がせん断によ る割れが起るため,材料内の圧力が高められなかったの が原因と考えられる.枝の先端部は強加工でないため, 幹の部分の硬さより僅かに小さい値である.幹中心部は上

(Unit: HV) 図 14 枝部品のビカース硬さ

下から押され,左右に流出し難いので硬さが最も高くなっている.枝においては,強加工されている枝元が高い値であり,この根元から離れるにつれて値は低くなっている. (c),(d)の値は(b)より加工温度は低いが硬さ分布の値は高い値になっている.

4 まとめ

据込み試験により機械的特性を得た.この結果に基づ きマグネシウム合金 AZ61 の温間側方押出し加工を多軸 材料試験機で行い次の結果が得られた.

- (1) 据込み試験において、室温での破壊は歪 0.1 でおこり、170℃以上で,割れのないものの流動応力は減少し、容易に歪 0.5 以上の変形が得られた.
- (2) 加工温度 213℃で、割れのない枝部品を側方押出し 加工することが出来た。
- (3) 背圧を付加することで、加工温度を減少することが 出来、150MPaでは190℃で、250MPaでは180℃で 割れのない2枝部品を側方押出しすることが出来た.
- (4) 枝直径を 8mm にして,材料内の静水圧を高めることにより,加工温度を低減することができ,押出し速度 5mm/min,温度 175℃で4枝部品を加工することが出来た.
- (5) 健全な製品を得るためには加工温度を高めるか 材料内の静水圧を高めることが不可欠である.

謝辞

本研究の一部は天田金属加工機械技術振興財団の研究 助成によることを付記し, 謝意を表します.

参考文献

- 1) 篠崎吉太郎,多ラム機械による冷間複動押出し加工 法の研究,機械技術研究所報告148号,1987
- 2) E. Doege and St. Janssen, Magnesium precision forming-experimental and numerical approach for magnesium near net-shape processing, P171.
- 3) 初鹿野,松崎,篠崎,温間押出し加工によるマグネ シウム合金の枝付き部品の変形挙動,平成15年度 塑性加工春期講演会,P109,2003
- 4) Hatsukano, Matsuzaki, Deformation Behavior and Forging of Magnesium wrought Alloy, International conference on processing & manufacturing of advanced materials, Part1, P557, 2003.
- 5) 初鹿野,松崎,清水,篠崎,背圧付加温間押出し加 エによるマグネシウム合金の枝付き部品成形の変 形挙動,第54回塑性加工連合講演会,P375,2003