せん断ひずみ層を活用したマイクロ加工と

高機能化

— 表層部付加的せん断ひずみ層が引張り強さ と延性にあたえる影響 —

浅川 基男* 梶野 智史**

1. はじめに

近年,精密機器や電気・電子機器の高精度・高精細化 にともない,引抜き細線材の需要が高まりつつある.細 線材の特徴として,線径が細くなるほど延性を保ちなが ら引張り強さが上昇する現象,いわゆる「寸法効果」が 知られている.この寸法効果のメカニズムを解明し,細 線の特性を把握することは,細線材のさらなる高強度化, およびマイクロ塑性加工技術の発展に必要不可欠である.

大きな径よりも直径が小さくなると材料の性質が変 化する寸法効果の主な原因として,①結晶粒の大きさと 幾何学的寸法の変化,②材料表層部と中心部の加熱・冷 却の一様化による組織の均一化,③伸線加工後の急冷効 果によるひずみ時効防止,延性保持などが挙げられる.

一般的に塑性加工において、工具と材料間に「付加的 せん断ひずみ層」が発生することが知られている. 伸線 加工プロセスでもダイスと材料間の摩擦により、付加的 せん断ひずみ層が発生する¹⁾.本研究では、このせん断 ひずみが上記寸法効果に加え、細線のさらなる引張り強 さ向上に寄与していると考え、その詳細を力学的、結晶 組織学的に究明することにした.

2. 付加的せん断ひずみ層の深さ

伸線加工後,表層部に発生する付加的せん断ひずみ層 の深さを硬さ試験によって測定した.材料はパーライト などの組織による硬さ分布のばらつきの少ない低炭素鋼 SWRM6を用いた.その材料組成をTable1に示す.

 Table 1
 Chemical composition of material

		mass %		
С	Si	Mn	Р	S
0.01	0.01	0.22	0.02	0.02

直径 5.5 mm から各パス 16~19%の減面率で連続伸線 し、1 パスごとにサンプリングした.その試験片を 1073 K, 1 h の条件で焼鈍し、さらにダイス半角 α =7 deg、ベアリ ング長さ l = D/2 のダイスを使用して、減面率を 16%、 伸線速度を 3 m/min、ステアリン酸カルシウムによる乾 式潤滑で 1 パス伸線した後、線材を横断面で研磨し、内 部の硬さ分布を測定した.硬さ試験はおよそ 10 μ m 間隔 ごとに 10 点を測定し、その平均値をグラフにプロットし た.測定結果を Fig.1 に示す.

すべての実験結果において最表層部の硬さが最も高

く,硬さ値は中心に向かって徐々に低下する.一方,あ る深さまで達すると硬さ値は一定となる.硬さ値が一定 になるまでの深さをここでは,付加的せん断ひずみ層深 さんと定義した.

Fig. 1より, 直径 D = 4.450 mmにおいて $\lambda = 32$ µm, D = 2.120 mmにおいて $\lambda = 36$ µm, D = 0.920 mmにおい $\tau \lambda = 37$ µm, D = 0.275 mmにおいて $\lambda = 55$ µmとなった. その深さえを太径 (D = 5.500 mm)から細径 (D = 0.500mm)まで測定した結果を**Fig. 2**に示す.この結果より線 径 Dに無関係に片側で $\lambda = 30$ から 50 µmの間の深さで一 定であることが観察される.これは付加的せん断ひずみ 層が幾何学的寸法に関係しない,絶対値を有する点で興 味深いといえよう.

Fig. 2 Relationship between diameter D and depth of additional shear strain layer λ_a

3. 付加的せん断ひずみ層が材料の引張り強さ・延 性に与える影響

3.1 実験方法

ここでは一定の深さを示した付加的せん断ひずみ層 が材料の引張り強さに与える影響を検討する.その検討 方法として,表層に付加的せん断ひずみ層を持つ線材と, 表層から付加的せん断ひずみ層を除去した線材を引張り 試験し,その引張り強さを比較した.線材を準備する際 の注意点は,付加的せん断ひずみ層の有無以外に相違点 がないことである.そのため,内部組織を変化させずに 表層部を除去する方法として,リン酸と硫酸の混合液を 電解液として,陰極に鉛,陽極に材料(SWRM6)を設 置した電解研磨法を用いた.直径は異なるが内部組織が 一様な線材の内部組織写真を Fig.3 に示す.

(a) Before polishing(b) After polishingFig. 3 Microstructure of wire before and after electro-polishing

この方法により,内部組織が一定で表層部を除去した 線材を得られることが確認できた.引張り試験には,細 線材の引張り強さを高精度で測定するため,高精度低容 量ロードセルを用いた水平型引張り試験機を自作した. 変位は画像センサの画素変化から測定した. Fig. 4 に引 張り試験機と画像センサを, Table 2 にその性能・精度を 示す. Fig. 5 に示すように線材のチャック部は切出した 裏・表の紙に線材を挟んで接着し,引張り試験でのチャ ック切れを防止した.引張り試験機に装着後,図の上部 の紙を切断し,引張り荷重が線材にのみに負荷されるよ うにした.紙のスリット間(本実験では標点間距離を線 径の約 10 倍の 3 mm とした)は標点間距離を兼ねている ため,この距離を画像センサにより測定することにより ご位き

Fig. 5 Tensile test method for fine wire

Table 2	Tensile	test	machine	and
camera sensor specifications				

······································	
Load-cell capacity N	500
Load-cell accuracy N	±1
Gage length L mm	3
Strain rate $\delta \mathcal{E}$ %/sec	0.11
Measurement accuracy of displacement mm	±0.004

3.2 伸線加工による表層部の引張り強さ向上

直径 0.300 mm の焼鈍材(1073 K, 0.5 h)と, この線材を, ダイス径 D = 0.275 mm, ダイス半角α = 7 deg, ベアリン グ長さ l = D/2 のダイスを使用して, 減面率 16%で 1 パ ス伸線(伸線速度:0.6 m/min, 潤滑油粘度 1023 cSt の湿 式潤滑)した線材において,表層部を除去した場合の引 張り強さ推移を Fig. 6, 7 に示す. 焼鈍材では,表層を除 去しても引張り強さに変化が見られなかった.

一方, Fig, 7 に示すように1パス伸線材では,表層部 を除去すると引張り強さが減少している.この結果より, 伸線加工することによって,表層部の引張り強さが中心 部と比べて大きく向上していることが判明した²⁾⁻⁵⁾.この ことから,表層部における引張り強さ上昇が,伸線加工 された細線の引張り強さ上昇に大きく寄与していること が考えられる.

さらに,除去された表層部の引張り強さを計算した結 果を **Fig. 8** に示す.表層からの深さが 20 μm までの層の 引張り強さは 610 MPa となり,焼鈍材の 2 倍,1 パス伸 線材の全体の平均引張り強さの 1.4 倍に相当する値を示 している.また,深さ 20 から 35 μm の層では引張り強 さが 394 MPa となり,中心部では 330 MPa となる.この ように,引張り強さの分布は表層が最も高く,中心に近

づくほど低くなる. さらに,中心部の引張り強さは,伸 線前と比較して1割程度しか上昇していない.一方,線 材全体の平均の引張り強さは3割近く上昇している.こ のことから表層部の引張り強さが線材の引張り強さへの 影響が極めて大きいことが考えられる.

3.3 付加的せん断ひずみ層の効果とひずみ時効・残留応 カの関係

引張り強さに影響を与える要因として,他にひずみ時 効と残留応力が知られている.今までの実験は通常の伸 線プロセスで試験されており両者の影響が含まれている 可能性がある.この付加的せん断ひずみ層が両者の影響 で変化する可能性も否定できない.そこで,まず 0.1 m/min の低速度で伸線して発熱を抑え,ひずみ時効の影 響を極力小さくした線材を用意した.つぎに,再結晶温 度よりも大幅に低い温度で長時間保持し,組織を変化さ せない残留応力除去焼鈍を施した.

さまざまな焼鈍条件での残留応力除去後の応力一ひ ずみ線図を Fig. 9 に示す.焼鈍を施すことにより,全て の条件の線材において若干の伸びの回復が見られる.ま た,焼鈍後の材料では,転位が若干回復したためにわず かな降伏伸びが見られる.ここではさまざまな条件の中 から,1パス伸線材と引張り強さの変化の少ない 673 K, 3 hの焼鈍条件を採用した.本条件の焼鈍前後の内部組 織の観察結果を Fig. 10 に示す.焼鈍前後に組織や機械的 性質の変化を最小限に抑えながら残留応力のみをほぼ除 去できたものと考えた.

Fig. 9 Nominal stress-strain ($\sigma_N - \varepsilon_N$) diagram of stress-released wire

stress

nal

E.

(a) Before annealed (b) After annealed Fig. 10 Micro structure of stress released wire

残留応力の除去前後における,線径の25%に相当する 深さまでの表層部を除去した場合としない場合の応力--ひずみ線図を Fig. 11, 12 に示す.初期の線径が異なるの は,研磨による表面性状変化が引張り強さに与える影響 を小さくするように予備研磨を施したためである. Fig. 11 より,低速度(0.1 m/min)で伸線し,ひずみ時効がほ とんどない線材において,表層部除去により引張り強さ が減少していることが確認できた.よって,表層部の引 張り強さ向上はひずみ時効とは無関係であると考えられ る.また,残留応力除去焼鈍を施した線材においても表 層除去により引張り強さが減少している.そこで,引張 り強さと伸びの減少率を Table 4,5 に示す.

Fig. 12 Nominal stress-strain $(\sigma_N - \varepsilon_N)$ diagram of stress-released wire

	ia elongation e max in non stress ien			
•	Diameter Tensile strength		Elongation	
	D mm	$\sigma_{\scriptscriptstyle B}$ MPa	E _{max} %	
	0.265	412	12.9	
	0.230	364	10.0	
	Decrease ratio r, %	11.6	22.0	

Table 4 Decrease ratio of tensile strength σ_B and elongation \mathcal{E}_{a} in non-stress-released

Table 5Decrease ratio of tensile strength σ_B and elongation \mathcal{E}_{max} in stress-released

Diameter	Tensile strength	Elongation	
D mm	$\sigma_{\!\scriptscriptstyle B}$ MPa	E _{max} %	
0.260	434	27.6	
0.223	382	20.6	
Decrease ratio r _e %	11.9	25.4	

結果より,残留応力を除去しない場合で,表層部の除 去による引張り強さの低下は11.6%,伸びの低下は22.0% である.一方で,残留応力を除去した場合の引張り強さ の低下は11.9%,伸びの低下は25.4%とほぼ同じ傾向を 示す.すなわち残留応力の有無に関係なく,表層部のせ ん断ひずみ層には,引張り強さ向上の効果がある.この ことから,残留応力とは無関係に,細線の引張り強さ向 上および延性維持は付加的せん断ひずみ層による効果が 大きいと考えられる^{6)~9)}.

3.4 付加的せん断ひずみ層効果のサイズによる相違

SWRM6 の直径 1.00 mm, 0.300 mm の焼鈍材(1073 K, 1 h)を, ダイス径 D=0.275 mm, および 0.920 mm, ダイ ス半角α=7 deg, ベアリング長さ l=D/2 のダイスで減面 率 16%の伸線(伸線速度:0.1 m/min, 潤滑剤粘度 1023 cSt の湿式潤滑)した後, 電解研磨により表層部を除去しつ つ引張り強さを測定した結果を Fig. 13, 14 に示す.

electro-polishing (D = 0.275 mm wire)

太線材である直径 0.920 mm材では,引張り強さの変化 はなく,ほぼ一定の引張り強さを示している.それに対 して,細線材である直径 0.275 mm材では,表層部を除去 するにつれて引張り強さが減少する結果となった.この 結果より,太線材では付加的せん断ひずみ層が引張り強 さに与える影響は小さいが,細線材ではその影響が大き いと考えられる.付加的せん断ひずみ層は同じ減面率で は,線径に無関係に一定の深さであることが判明してい る.よって,線径が細くなるほど,線全体に対して付加 的せん断ひずみ層が占める割合が大きくなると予想される. そこで, **Fig. 15** および(1)式に示すように,除去した表層部の面積 A_r が,線全体の面積 A_o に占める割合を面積占有率 R_A と定義した.

$$R_A = A_r / A_o \tag{1}$$

今回の実験では、太線材、細線材ともに表面から 25 μ m の深さまで表層を除去した.この場合の計算結果を**Table** 6 に示す.太線材では、線全体の面積に対する除去した 面積の面積占有率 R_A が 10.5%である.一方、細線材では 面積占有率 R_A が 32.5%になっている.したがって表層の 同じ深さ数+ μ mの表層部を考えた場合、線径が細くなる ほど表層部の面積占有率が大きくなる.前述のように、 付加的せん断ひずみ層の深さは線径に依らず一定であっ た.つまり細線材では付加的せん断ひずみ層が線全体に 占める割合が大きくなり、引張り強さが大幅に向上する ことが考えられる.

Fig. 15 Removed area A_r and original area A_o

 Table 6
 Area ratio in each diameter

Diameter D mm	Area ratio R_A %
0.920	10.5
0.275	32.5

4. 付加的せん断ひずみ層の結晶方位測定

4.1 表層部における結晶粒回転

圧延素材を1パス伸線後,完全焼鈍した低炭素鋼線 SWRM6(線径 5.5 mm)を真ひずみで 3.5 まで連続伸線 した線径 0.95 mm材のL断面において, SEM-EBSDによ り結晶方位を測定した.測定個所は表層部と中心部の2 箇所である(Fig. 16参照). 引抜き方向とRDを一致させ て材料座標系を設定した. {001} 極点図をFig. 17 に示す. 中心部の極点図では、スポットが3つ、一方、表層部の 極点図では,6つのスポットが存在している.Fig.18(a) に中心部の極点図から読み取れる結晶方位を示す.表層 部において、白丸で囲んだ3つのスポットは中心部の結 晶方位と同じになる.残りの黒丸で囲んだ3つのスポッ トから, Fig. 18 (b)に示す結晶方位が読み取れる. この ように, 主な結晶方位が1つしか存在しない中心部とは 異なって表層部には主な結晶方位が2つ存在していると 判断した7)~9).これは、表層部の結晶回転が中心部と異 なっているためと考えられる.そこで、 $\Phi 5.5$ mmから の連続伸線中の線材の結晶方位を測定した結果をFig. 19 に示す.表層部ではRD軸を中心とした回転が観察で きた.この結晶回転により、表層部の結晶粒は中心部よ りも細かくなり、その結果、表層部の引張り強さが高い と考えられる.

Fig. 19 {001} pole figures of surface layer during continual drawing

4.2 結晶粒分断化

1073 K, 0.5 h で完全焼鈍した低炭素鋼線 SWRM6 の直径 0.300, 1.000 mm の線材を, ダイス径 D = 0.275 mm,, ダイス半角α=7 deg, ベアリング長さ *l* = D/2 のダ イスを使用して, 減面率 16%で 1 パス伸線(伸線速度: 0.1 m/min, 潤滑油粘度:1023 cSt)した線材において, 横断面を研磨して SEM-EBSD で結晶方位を測定した. 測定個所は表層部と中心部であり,測定方法は幅 40 µm, 長さ 100 µm の範囲をステップ幅 0.5 µm とした. 結晶方 位差 2, 5, 8, 15 deg をそれぞれ結晶粒界として結晶粒 径を観察した.

Fig. 20に1パス伸線材表層部の方位差15 と 5 deg を 結晶粒界とした場合の結晶粒マップを示す. 方位差角を 小さくするにつれ,小傾角粒界で結晶粒が分断されてい るのが観察できた. Fig. 21 に方位差15 deg の場合の結 晶粒数を基準として,各方位差の場合の結晶粒数の比を 示す. このグラフでは縦軸の数値が大きくなるほど,15 deg の場合より結晶粒数が増加していることを意味し,

各方位差角度における結晶粒の分断化を表している. 焼 鈍材の結果(Fig. 21 (a))では,方位差8 deg以下では 結晶粒数の増加が見られない.それに対して,伸線材(Fig. 21 (b))では,8 deg以下の方位差で,結晶粒数の増加 が見られる.よって,この8 deg以下の方位差は伸線加 工によって発生したと判断できる.また,伸線材の中心 部では5 degの方位差を粒界とした時には結晶粒数の増 加はないが,2 degの方位差を結晶粒界にした場合には 増加している.一方で,表層部では5 degの場合でも結 晶粒数の増加が確認できる.このように,付加的せん断 変形が加わっている表層部では中心部よりも大きい方位 差が発生し,より結晶粒の分断化が促進されると予想さ れる.

5. 結言

引抜き材における表層部付加的せん断ひずみ層が線 材の引張り強さ,延性に与える影響を検討した結果,以 下の知見を得た.

(1) 線径に関係なく表層から絶対値で約40 µm まで 硬化層が観察される.これは材料と工具の間に働く付加 的せん断ひずみ層の影響によるものと考えられる.

(2) 伸線加工によって,線材の表層部の引張り強さ は劇的に上昇する.例えば低炭素鋼 SWRM6,直径 0.300 mmの焼鈍材を減面率 16%で1パス伸線して直径 0.275 mm とした場合,表層部引張り強さは,伸線後平均応力 の1.4倍,伸線前焼鈍材の2倍の値を示す.

(3) 線形が細くなるほど付加的せん断ひずみ層が占 める割合が大きくなるため,引張り強さ向上の効果が顕 著になる.

(4) 表層部では付加的せん断変形によって,結晶 粒が分断化されている.そのため,引張り強さが向 上している.

*早稲田大学	理工学部	機械工学科	教授
**早稲田大学	理工学部	機械工学科	助手

謝辞

本研究は天田金属加工機械技術財団の研究助成金によ り,実施・推進されたものであります.関係各位に深謝 の意を表します.

参考文献

1) 稲数直次:金属引抜(初版),(1985),近代編集社.
 2) 梶野智史,浅川基男:平 17 塑加春講演,(2005),193-194.

- 3) S.Kajino, M.Asakwa : Wireexpo, proceddings, (2005).
- 4) S.Kajino, M.Asakwa : M&P2005, proceedings, (2005).

5) S.Kajino, M.Asakwa : Ictp2005, proceedings, (2005), 429-430.

6) 梶野智史,浅川基男,小口智弘:平16 塑加春講論,(2004), 309-310.

7) S.Kajino, M.Asakawa : Steel Grips, 2-6(2004), 635-639.

8) 梶野智史,浅川基男:第12回機械材料・材料加工技 術講演会論文集,435-436.

9) 梶野智史,浅川基男:55 回塑加連講論,(2004), 511-512.